This paper holds a survey on plant leaf diseases classification using image processing. Digital image processing has three basic steps: image processing, analysis and understanding. Image processing contains the preprocessing of the plant leaf as segmentation, color extraction, diseases specific data extraction and filtration of images. Image analysis generally deals with the classification of diseases. Plant leaf can be classified based on their morphological features with the help of various classification techniques such as PCA, SVM, and Neural Network. These classifications can be defined various properties of the plant leaf such as color, intensity, dimensions. Back propagation is most commonly used neural network. It has many learning, training, transfer functions which is used to construct various BP networks. Characteristics features are the performance parameter for image recognition. BP networks shows very good results in classification of the grapes leaf diseases. This paper provides an overview on different image processing techniques along with BP Networks used in leaf disease classification.
Biometrics is the science of human recognition by means of their biological, chemical or behavioural traits. These systems are used in many real life applications simply from biometric based attendance system to providing security at a very sophisticated level. A biometric system deals with raw data captured using a sensor and feature template extracted from raw image. One of the challenges being faced by designers of these systems is to secure template data extracted from the biometric modalities of the user and protect the raw images. In order to minimize spoof attacks on biometric systems by unauthorised users one of the solutions is to use multi-biometric systems. Multi-modal biometric system works by using fusion technique to merge feature templates generated from different modalities of the human. In this work, a novel scheme is proposed to secure template during feature fusion level. The scheme is based on union operation of fuzzy relations of templates of modalities during fusion process of multimodal biometric systems. This approach serves dual purpose of feature fusion as well as transformation of templates into a single secured non invertible template. The proposed technique is irreversible, diverse and experimentally tested on a bimodal biometric system comprising of fingerprint and hand geometry. The given scheme results into significant improvement in the performance of the system with lower equal error rate and improvement in genuine acceptance rate.
Edge detection is the process of segmenting an image by detecting discontinuities in brightness. Several standard segmentation methods have been widely used for edge detection. However, due to inherent quality of images, these methods prove ineffective if they are applied without any preprocessing. In this paper, an image pre-processing approach has been adopted in order to get certain parameters that are useful to perform better edge detection with the standard edge detection methods. The proposed preprocessing approach involves median filtering to reduce the noise in image and then edge detection technique is carried out. Finally, Standard edge detection methods can be applied to the resultant pre-processing image and its Simulation results are show that our pre-processed approach when used with a standard edge detection method enhances its performance.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.