Despite the availability of many drugs to treat infectious diseases, the problems like narrow antimicrobial spectrum, drug resistance, hypersensitivities and systemic toxicities are hampering their clinical utility. Based on the above facts, in the present study, we designed, synthesized and evaluated the antibacterial and antifungal activity of novel fluorinated compounds comprising of chalcones bearing trifluoromethyl (A1–A10) and trifluoromethoxy (B1–B10) substituents. The compounds were characterized by spectroscopic techniques and evaluated for their antimicrobial activity against four pathogenic Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Bacillus subtilis) bacterial and fungal (Candida albicans and Aspergillus niger) strains. In this study, the compounds with trifluoromethoxy group were more effective than those with trifluoromethyl group. Among the 20 fluorinated chalcones, compound A3/B3 bearing an indole ring attached to the olefinic carbon have been proved to possess the most antimicrobial activity compared to the standard drugs without showing cytotoxicity on human normal liver cell line (L02). Further, the minimum inhibitory concentration (MIC) for A3/B3 was determined by serial tube dilution method and showed potential activity. These results would provide promising access to future study about the development of novel agents against bacterial and fungal infections.
A series of newer previously synthesized fluorinated chalcones and their 2-amino-pyridine-3-carbonitrile and 2-amino-4H-pyran-3-carbonitrile derivatives were screened for their in vitro antitubercular activity and in silico methods. Compound 40 (MIC~ 8 μM) was the most potent among all 60 compounds, whose potency is comparable with broad spectrum antibiotics like ciprofloxacin and streptomycin and three times more potent than pyrazinamide. Additionally, compound 40 was also less selective and hence non-toxic towards the human live cell lines-LO2 in its MTT assay. Compounds 30, 27, 50, 41, 51, and 60 have exhibited streptomycin like activity (MIC~16–18 μM). Fluorinated chalcones, pyridine and pyran derivatives were found to occupy prime position in thymidylate kinase enzymatic pockets in molecular docking studies. The molecule 40 being most potent had shown a binding energy of -9.67 Kcal/mol, while docking against thymidylate kinase, which was compared with its in vitro MIC value (~8 μM). These findings suggest that 2-aminopyridine-3-carbonitrile and 2-amino-4H-pyran-3-carbonitrile derivatives are prospective lead molecules for the development of novel antitubercular drugs.
Objective: Investigation, the series of newer 2‐amino-pyridine‐3‐carbonitrile and 2‐amino-4H-pyran‐3‐carbonitrile derivative were synthesized and evaluated antimicrobial activities and antioxidant activity.
Methods: Novel synthesized chalcones were further condensation to give 2-amino-3-cyanopyridine and 2-amino-3-cyanopyrans in the presence of malononitrile, pyridine, and ammonia acetate. The product is characterized by conventional and instrumental methods. Pyridine and 4-H-Pyran and their analogs occupy prime position due to their diverse applications.
Results: The compounds A3C and B3C exhibited marked zone of inhibition with 30.02±0.02 mm and 29.06±0.01 mm, respectively. Docking studies suggested possible interactions with dihydrofolic reductase 4 with 9.15 and −9.67 kcal/mol, respectively. The IC50 30.28±0.01 exhibited A3C by 2,2-diphenylpicrylhydrazyl methods which is better among the series. The 2-amino-3-cyanopyridine derivatives were found good activity than 2-amino-3-cyanopyrane derivative. Among all synthesized compounds few having potent activity and some are near to the standard.
Conclusion: Antimicrobial activity and antioxidant of the newly synthesized pyrans and pyridines derivatives will definitely inspire future researchers for the preparation of new analogs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.