Heterogeneous Fenton catalysts are emerging as excellent systems for applications related to water purification. In this review, recent trends in the synthesis and application of heterogeneous Fenton catalysts for the abatement of organic pollutants and disinfection of microorganisms are discussed. It is noted that as the complexity of cell wall increases, the resistance level towards various disinfectants increases and it requires either harsh conditions or longer exposure time for the complete disinfection. In case of viruses, enveloped viruses (
e.g.
SARS-CoV-2) are found to be more susceptible to disinfectants than the non-enveloped viruses. The introduction of plasmonic systems with the Fenton catalysts broaden the visible light absorption efficiency of the hybrid material, and incorporation of semiconductor material improves the rate of regeneration of Fe(II) from Fe(III). A special emphasis is given to the use of Fenton catalysts for antibacterial applications. Composite materials of magnetite and ferrites remain a champion in this area because of their easy separation and reuse, owing to their magnetic properties. Iron minerals supported on clay materials, perovskites, carbon materials, zeolites and metal-organic frameworks (MOFs) dramatically increase the catalytic degradation rate of contaminants by providing high surface area, good mechanical stability, and improved electron transfer. Moreover, insights to the zero-valent iron and its capacity to remove a wide range of organic pollutants, heavy metals and bacterial contamination are also discussed. Real world applications and the role of natural organic matter are summarised. Parameter optimisation (e.g. light source, dosage of catalyst, concentration of H
2
O
2
etc.
), sustainable models for the reusability or recyclability of the catalyst and the theoretical understanding and mechanistic aspects of the photo-Fenton process are also explained. Additionally, this review summarises the opportunities and future directions of research in the heterogeneous Fenton catalysis.
The thermal stability of anatase titanium dioxide (TiO2) is a prerequisite to fabricate photocatalyst coated indoor building materials for use in antimicrobial and self-cleaning applications under normal room light illumination. Metal doping of TiO2 is an appropriate way to control the anatase to rutile phase transition (ART) at high processing temperature. In this present work, ART of indium (In) doped TiO2 (In-TiO2) was investigated in detail in the range of 500 °C -900 °C. In-TiO2 (In mol % = 0 to 16) was synthesized via a modified solgel approach. These nanoparticles were further characterized by means of powder X-ray diffraction (XRD), Raman, photoluminescence (PL), transient photocurrent response, and Xray photoelectron spectroscopy (XPS) techniques. XRD results showed that the anatase phase was maintained up to 64 % by 16-mol % of In doping at 800 °C of calcination temperature.XPS results revealed that the binding energies of Ti 4+ (Ti 2p1/2 and Ti 2p3/2) were red-shifted by In doping. The influence of In doping on the electronic structure and oxygen vacancy formation of anatase TiO2 was studied using density functional theory corrected for on-site Coulomb interactions (DFT+U). First principles results showed that the charge compensating oxygen vacancies form spontaneously at sites adjacent to the In dopant. DFT+U calculations revealed the formation of In -5s states in the band gap of the anatase host. The formation of In2O3 at the anatase surface was also examined using a slab model of the anatase (101)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.