We provide a survey of the Kolkata index of social inequality, focusing in particular on income inequality. Based on the observation that inequality functions (such as the Lorenz function), giving the measures of income or wealth against that of the population, to be generally nonlinear, we show that the fixed point (like Kolkata index k) of such a nonlinear function (or related, like the complementary Lorenz function) offer better measure of inequality than the average quantities (like Gini index). Indeed the Kolkata index can be viewed as a generalized Hirsch index for a normalized inequality function and gives the fraction k of the total wealth possessed by the rich 1−k fraction of the population. We analyze the structures of the inequality indices for both continuous and discrete income distributions. We also compare the Kolkata index to some other measures like the Gini coefficient and the Pietra index. Lastly, we provide some empirical studies which illustrate the differences between the Kolkata index and the Gini coefficient.
We study the mathematical and economic structure of the Kolkata (k) index of income inequality. We show that the k-index always exists and is a unique fixed point of the complementary Lorenz function, where the Lorenz function itself gives the fraction of cumulative income possessed by the cumulative fraction of population (when arranged from poorer to richer). We show that the k-index generalizes Pareto's 80/20 rule. Although the k and Pietra indices both split the society into two groups, we show that k-index is a more intensive measure for the poor-rich split. We compare the normalized k-index with the Gini coefficient and the Pietra index and discuss when they coincide. We establish that for any income distribution the value of Gini coefficient is no less than that of the Pietra index and the value of the Pietra index is no less than that of the normalized k-index. While the Gini coefficient and the Pietra index are affected by transfers exclusively among the rich or among the poor, the k-index is only affected by transfers across the two groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.