Cholesterol induced mechanical effects on artificial lipid bilayers are well known and have been thoroughly investigated by AFM force spectroscopy. However, dynamics of cholesterol impingement into bilayers at various cholesterol concentrations and their effects have not been clearly understood. In this paper we present, the effect of cholesterol as a function of its concentration in a simple single component dioleoylphosphatidylcholine (DOPC) bilayer. The nature of measured breakthrough forces on a bilayer with the addition of cholesterol, suggested that it is not just responsible to increase the mechanical stability but also introduces irregularities across the leaflets of the bilayer. This cholesterol induced asymmetry across the (in the inner and outer leaflets) bilayer is related to the phenomena of interleaflet coupling and is a function of cholesterol concentration probed by AFM can provide an unprecedented direction on mechanical properties of lipid membrane as it can be directly correlated to biophysical properties of a cell membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.