Aluminum boron carbide metal matrix composites (Al-MMC) have got wide applications in aeronautical and automobile industries due to their excellent mechanical and physical properties. Due to the presence of harder reinforcement particles, machining of these composites is a difficult task. The results of experimental investigation on mechanical and machinability properties of Boron carbide particle (B4Cp) reinforced aluminum metal matrix composites are presented in this paper.The influence of reinforced ratio of 7 wt% of B4Cpon mechanical properties was examined. It was observed that addition of B4Cpreinforcement resulted in improvement in hardness and tensile strengths to the extent of 71% and 38.4% respectively. Fabricated samples were turned on medium duty lathe of 3 kW spidle power with Poly crystalline diamond tool (PCD) of 10 μm particle size at various cutting conditions. The effect of machining parameters, e.g. cutting speed, feed rate and depth of cut on cutting forces and formation of BUE was studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.