A new class of solutions to the electroweak hierarchy problem is presented that does not require either weak scale dynamics or anthropics. Dynamical evolution during the early universe drives the Higgs mass to a value much smaller than the cutoff. The simplest model has the particle content of the standard model plus a QCD axion and an inflation sector. The highest cutoff achieved in any technically natural model is 10 8 GeV.
We propose an experiment to search for QCD axion and axionlike-particle dark matter. Nuclei that are interacting with the background axion dark matter acquire time-varying CP-odd nuclear moments such as an electric dipole moment. In analogy with nuclear magnetic resonance, these moments cause precession of nuclear spins in a material sample in the presence of an electric field. Precision magnetometry can be used to search for such precession. An initial phase of this experiment could cover many orders of magnitude in axionlike-particle parameter space beyond the current astrophysical and laboratory limits. And with established techniques, the proposed experimental scheme has sensitivity to QCD axion masses m a ≲ 10 −9 eV, corresponding to theoretically well-motivated axion decay constants f a ≳ 10 16 GeV. With further improvements, this experiment could ultimately cover the entire range of masses m a ≲ μ eV, complementary to cavity searches.
We calculate the production of a massive vector boson by quantum fluctuations during inflation.This gives a novel dark-matter production mechanism quite distinct from misalignment or thermal production. While scalars and tensors are typically produced with a nearly scale-invariant spectrum, surprisingly the vector is produced with a power spectrum peaked at intermediate wavelengths. Thus dangerous, long-wavelength, isocurvature perturbations are suppressed. Further, at long wavelengths the vector inherits the usual adiabatic, nearly scale-invariant perturbations of the inflaton, allowing it to be a good dark matter candidate. The final abundance can be calculated precisely from the mass and the Hubble scale of inflation, HI . Saturating the dark matter abundance we find a prediction for the mass m ≈ 10 −5 eV×(10 14 GeV/HI ) 4 . High-scale inflation, potentially observable in the CMB, motivates an exciting mass range for recently proposed direct detection experiments for hidden photon dark matter. Such experiments may be able to reconstruct the distinctive, peaked power spectrum, verifying that the dark matter was produced by quantum fluctuations during inflation and providing a direct measurement of the scale of inflation. Thus a detection would not only be the discovery of dark matter, it would also provide an unexpected probe of inflation itself.
We propose new signals for the direct detection of ultralight dark matter such as the axion. Axion or axion like particle (ALP) dark matter may be thought of as a background, classical field. We consider couplings for this field which give rise to observable effects including a nuclear electric dipole moment, and axial nucleon and electron moments. These moments oscillate rapidly with frequencies accessible in the laboratory, ∼ kHz to GHz, given by the dark matter mass. Thus, in contrast to WIMP detection, instead of searching for the hard scattering of a single dark matter particle, we are searching for the coherent effects of the entire classical dark matter field. We calculate current bounds on such time varying moments and consider a technique utilizing NMR methods to search for the induced spin precession. The parameter space probed by these techniques is well beyond current astrophysical limits and significantly extends laboratory probes. Spin precession is one way to search for these ultralight particles, but there may well be many new types of experiments that can search for dark matter using such time-varying moments.
Dark sectors, consisting of new, light, weakly-coupled particles that do not interact with the known strong, weak, or electromagnetic forces, are a particularly compelling possibility for new physics. Nature may contain numerous dark sectors, each with their own beautiful structure, distinct particles, and forces. This review summarizes the physics motivation for dark sectors and the exciting opportunities for experimental exploration. It is the summary of the Intensity Frontier subgroup "New, Light, Weakly-coupled Particles" of the Community Summer Study 2013 (Snowmass). We discuss axions, which solve the strong CP problem and are an excellent dark matter candidate, and their generalization to axion-like particles. We also review dark photons and other dark-sector particles, including sub-GeV dark matter, which are theoretically natural, provide for dark matter candidates or new dark matter interactions, and could resolve outstanding puzzles in particle and astro-particle physics. In many cases, the exploration of dark sectors can proceed with existing facilities and comparatively modest experiments. A rich, diverse, and lowcost experimental program has been identified that has the potential for one or more game-changing discoveries. These physics opportunities should be vigorously pursued in the US and elsewhere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.