BackgroundThree-dimensional (3-D) cultures of cancer cells can potentially bridge the gap between 2-D drug screening and in vivo xenografts. The objective of this study was to characterize the cellular and extracellular matrix characteristics of spheroids composed of human lung epithelial cells (epi), pulmonary vascular endothelial (endo) cells, and human marrow-derived mesenchymal stems cells (MSCs).MethodsSpheroids composed of epi/endo/MSCs, termed herein as synthetic tumor microenvironment mimics (STEMs), were prepared by the hanging drop method. Cellular composition and distribution in the STEMs was characterized using fluorescence microscopy. Induction of reactive oxygen species and upregulation of efflux transporters was quantified using fluorometry and PCR, respectively, and phenotypic markers were qualitatively assessed using immunohistochemistry.ResultsSTEMs exhibited three unique characteristics not captured in other spheroid cultures namely, the presence of a spheroid core devoid of epithelial cells and primarily composed of MSCs, a small viable population of endothelial cells hypothesized to be closely associated with MSCs within the hypoxic core, and discrete regions with high expression for vimentin and cytokeratin-18, whose co-expression is co-related with enhanced metastasis. Although cells within STEMs show elevated levels of reactive oxygen species and mRNA for ABC-B1, an efflux transporter associated with drug resistance, they exhibited only modest resistance to paclitaxel and gemcitabine in comparison to 2-D tri-cultures.ConclusionsThe epi/endo/MSC spheroid model described herein offers a promising platform for understanding tumor biology and drug testing in vitro.Electronic supplementary materialThe online version of this article (doi:10.1186/s12885-016-2634-1) contains supplementary material, which is available to authorized users.
Effective drug delivery to the deeper ocular tissues remains an unresolved conundrum mainly due to the expression of multidrug resistance efflux proteins, besides tight junction proteins, in the blood ocular barriers (BOBs). Hence, the purpose of the current research was to investigate the ability of the third-generation efflux protein inhibitors, elacridar (EQ), and tariquidar (TQ), to diminish P-glycoprotein (P-gp) mediated efflux transport of loperamide (LOP), a P-gp substrate, across the BOB in Sprague Dawley rats. Initially, Western blot analysis confirmed the expression of P-gp in the iris-ciliary bodies and the retina choroid in the wild type rats. Next, the ocular distribution of LOP, in the presence and absence of EQ/TQ (at 2 doses), was evaluated. The significantly higher aqueous humor/plasma (D) and vitreous humor (VH)/plasma (D) distribution ratios of LOP in the rats pretreated with EQ or TQ demonstrated effective inhibition of P-gp activity in the BOB. Interestingly, the modulation of P-gp activity by EQ/TQ was more pronounced at the lower dose. The normal functioning and architecture of the retina, as indicated by electroretinography studies, confirmed the cytocompatibility of LOP and EQ/TQ interactions at the doses tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.