Abstract. The first successful development of controlled microwave processing for pharmaceutical formulations is presented and illustrated with a model drug (ibuprofen) and two excipients (stearic acid and polyvinylpyrrolidone). The necessary fine temperature control for formulation with microwave energy has been achieved using a uniquely modified microwave oven with direct temperature measurement and pulse-width modulation power control. In addition to comparing microwave and conventional heating, the effect of the presence of liquid (water) in aiding the mixing of the drug and excipient during formulation was also investigated. Analysis of the prepared formulations using differential scanning calorimetry and dissolution studies suggest that microwave and conventional heating produce similar products when applied to mixtures of ibuprofen and stearic acid. However, the differences were observed for the ibuprofen and polyvinylpyrrolidone formulation in terms of the dissolution kinetics. In all cases, the presence of water did not appear to influence the formulation to any appreciable degree. The application of controllable microwave heating is noteworthy as fine temperature control opens up opportunities for thermally sensitive materials for which microwave methods have not been feasible prior to this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.