SummaryA bacterial phytoene synthase (crtB) gene was overexpressed in a seed-speci®c manner and the protein product targeted to the plastid in Brassica napus (canola). The resultant embryos from these transgenic plants were visibly orange and the mature seed contained up to a 50-fold increase in carotenoids. The predominant carotenoids accumulating in the seeds of the transgenic plants were alpha and beta-carotene. Other precursors such as phytoene were also detected. Lutein, the predominant carotenoid in control seeds, was not substantially increased in the transgenics. The total amount of carotenoids in these seeds is now equivalent to or greater than those seen in the mesocarp of oil palm. Other metabolites in the isoprenoid pathway were examined in these seeds. Sterol levels remained essentially the same, while tocopherol levels decreased signi®cantly as compared to non-transgenic controls. Chlorophyll levels were also reduced in developing transgenic seed. Additionally, the fatty acyl composition was altered with the transgenic seeds having a relatively higher percentage of the 18 : 1 (oleic acid) component and a decreased percentage of the 18 : 2 (linoleic acid) and 18 : 3 (linolenic acid) components. This dramatic increase in¯ux through the carotenoid pathway and the other metabolic effects are discussed.
MATERIALS AND METHODS The maturation of soybean (Glycine max L. Merr.) somatic embryos was characterized. Maturation was assayed by evaluating the ability of somatic embryos to make the transition to a plantlet through a germination-like process. Somatic embryos were organized from cotyledons of immature soybean embryos. Maturation of somatic embryos occurred on a Murashige-Skoog basal medium supplemented with activated charcoal and 0.28 molar sucrose. After 8 weeks on this medium, somatfc embryos exhibited vigorous, high frequency development to plantdets. The "germination" frequency (conversion) of somatic embryos, and plantlet recovery frequency varied concurrently with maturation period. Conversion and plant recovery required no exogenous growth regulators. Desiccation of immature somatic embryos under controlled humidity regimes resulted in increased frequency of conversion of immature somatic embryos. Morphological abnormalities appeared in the somatic embryos, but few were detrimental to conversion velocity. There was little effect of genotype on conversion velocity or frequency.There have been several contemporary reports concerning the production of somatic embryos from cotyledons of immature soybean embryos (5,6,15,23,24). Although considerable effort has been expended in the characterization of somatic embryo induction, there is sparse quantitative information on the subsequent performance of the somatic embryos, especially with regard to their morphology, anatomy, development, physiology, and biochemistry. Although somatic embryogeny recapitulates zygotic embryology in many ways (7,22,28), this correlation has yet to be developed in soybean. Plant cell and tissue culture provides an excellent opportunity to study developmental processes in a controlled environment. However, cell and tissue cultures typically are not well-synchronized in development or differentiation. Therefore, the goals of this study are to understand the processes of soybean somatic embryo development, and to control expression of this process in a reproducible and controlled fashion. Our long-term goal is to determine if the requirements for somatic embryo maturation and development are comparable to that demanded by zygotic embryos. In this way, somatic embryos may function as a model for zygotic embryogenesis. ' Induction and Maturation of Somatic EmbryosSomatic embryos were generated on cotyledons of immature soybean (Glycine max L. Merr.) embryos as described by Ranch et al. (23,24). The genotypes used in these studies were cv 'Gem,' 'Star,' 'Shawnee,' 'A3127,' 'Williams 82,' and 'Union.' Immature seed were harvested from greenhouse or field-grown plants. At the appropriate stage for explant, the immature embryo possessed cotyledons 3 to 5 mm long and were 15 to 21 DAF in field-grown plants. Cotyledons were cultured abaxial surface down on solidified induction medium composed of Murashige and Skoog (17) Growth and Different during the Maturation RegimeAt the time of initial transfer to MM, and at intervals for 70 ...
Polyhydroxyalkanoates (PHAs) comprise a class of biodegradable polymers which offer an environmentally sustainable alternative to petroleum-based plastics. Production of PHAs in plants is attractive since current fermentation technology is prohibitively expensive. The PHA homopolymer poly(beta-hydroxybutyrate) (PHB) has previously been produced in leaves of Arabidopsis thaliana (Nawrath et al., 1994, Proc Natl Acad Sci USA 91: 12760-12764). However, Brassica napus oilseed may provide a better system for PHB production because acetyl-CoA, the substrate required in the first step of PHB biosynthesis, is prevalent during fatty acid biosynthesis. Three enzymatic activities are needed to synthesize PHB: a beta-ketothiolase, an acetoacetyl-CoA reductase and a PHB synthase. Genes from the bacterium Ralstonia eutropha encoding these enzymes were independently engineered behind the seed-specific Lesquerella fendleri oleate 12-hydroxylase promoter in a modular fashion. The gene cassettes were sequentially transferred into a single, multi-gene vector which was used to transform B. napus. Poly(beta-hydroxybutyrate) accumulated in leukoplasts to levels as high as 7.7% fresh seed weight of mature seeds. Electron-microscopy analyses indicated that leukoplasts from these plants were distorted, yet intact, and appeared to expand in response to polymer accumulation.
The use of a nonlethal selection scheme, most often using the aadA gene that confers resistance to spectinomycin and streptomycin, has been considered critical for recovery of plastid transformation events. In this study, the plastid-lethal markers, glyphosate or phosphinothricin herbicides, were used to develop a selection scheme for plastids that circumvents the need for integration of an antibiotic resistance marker. The effect of selective agents on tobacco (Nicotiana tabacum) mesophyll chloroplasts was first examined by transmission electron microscopy. We found that at concentrations typically used for selection of nuclear transformants, herbicides caused rapid disintegration of plastid membranes, whereas antibiotics had no apparent effect. To overcome this apparent herbicide lethality to plastids, a "transformation segregation" scheme was developed that used two independent transformation vectors for a cotransformation approach and two different selective agents in a phased selection scheme. One transformation vector carried an antibiotic resistance (aadA) marker used for early nonlethal selection, and the other transformation vector carried the herbicide (CP4 or bar) resistance marker for use in a subsequent lethal selection phase. Because the two markers were carried on separate plasmids and were targeted to different locations on the plastid genome, we reasoned that segregation of the two markers in some transplastomic lines could occur. We report here a plastid cotransformation frequency of 50% to 64%, with a high frequency (20%) of these giving rise to transformation segregants containing exclusively the initially nonselected herbicide resistance marker. Our studies indicate a high degree of persistence of unselected transforming DNA, providing useful insights into plastid chromosome dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.