Mevinolin, a fungal metabolite, was isolated from cultures of Aspergillus terreus. The structure and absolute configuration of mevinolm and its open acid form, mevinolinic acid, were determined by a combination of physical techniques.
Intensity controlled interval training increases cardiomyocyte contractility. Higher myofilament Ca(2+)-sensitivity, and enhanced Ca(2+)-handling and pH-regulation are putative mechanisms. Our results suggest that physical exercise induces adaptive hypertrophy in cardiac myocytes with improved contractile function.
Cardiac ryanodine receptors (RyR2s) play a critical role in excitation-contraction coupling by providing a pathway for the release of Ca(2+) from the sarcoplasmic reticulum into the cytosol. RyR2s exist as macromolecular complexes that are regulated via binding of Ca(2+) and protein phosphorylation/dephosphorylation. The present study examined the association of endogenous CaMKII (calcium/calmodulin-dependent protein kinase II) with the RyR2 complex and whether this enzyme could modulate RyR2 function in isolated rabbit ventricular myocardium. Endogenous phosphorylation of RyR2 was verified using phosphorylation site-specific antibodies. Co-immunoprecipitation studies established that RyR2 was physically associated with CaMKIIdelta. Quantitative assessment of RyR2 protein was performed by [(3)H]ryanodine binding to RyR2 immunoprecipitates. Parallel kinase assays allowed the endogenous CaMKII activity associated with these immunoprecipitates to be expressed relative to the amount of RyR2. The activity of RyR2 in isolated cardiac myocytes was measured in two ways: (i) RyR2-mediated Ca(2+) release (Ca(2+) sparks) using confocal microscopy and (ii) Ca(2+)-sensitive [(3)H]ryanodine binding. These studies were performed in the presence and absence of AIP (autocamtide-2-related inhibitory peptide), a highly specific inhibitor of CaMKII. At 1 microM AIP Ca(2+) spark duration, frequency and width were decreased significantly. Similarly, 1 microM AIP decreased [(3)H]ryanodine binding. At 5 microM AIP, a more profound inhibition of Ca(2+) sparks and a decrease in [(3)H]ryanodine binding was observed. Separate measurements showed that AIP (1-5 microM) did not affect sarcoplasmic reticulum Ca(2+)-ATPase-mediated Ca(2+) uptake. These results suggest the existence of an endogenous CaMKIIdelta that associates directly with RyR2 and specifically modulates RyR2 activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.