SummaryThe plant CDK inhibitor ICK1 was identi®ed previously from Arabidopis thaliana with its inhibitory activity characterized in vitro. ICK1 displayed several structural and functional features that are distinct from known animal CDK inhibitors. Despite the initial characterization, there is no information on the functions of any plant CDK inhibitor in plants. To gain insight into ICK1 functions in vivo and the role of cell division during plant growth and development, transgenic plants were generated expressing ICK1 driven by the cauli¯ower mosaic virus 35S promoter. In comparison to control plants, growth was signi®cantly inhibited in transgenic 35S-ICK1 plants, with some plants weighing <10% of wild-type plants at the 3 week stage. Most organs of 35S-ICK1 plants were smaller. There were also modi®cations in plant morphology such as shape and serration of leaves and petals. The changes were so drastic that 35S-ICK1 plants with strong phenotype no longer resembled wild-type plants morphologically. Analyses showed that increased ICK1 expression resulted in reduced CDK activity and reduced the number of cells in these plants. Cells in 35S-ICK1 plants were larger than corresponding cells in control plants. These results demonstrate that ICK1 acts as a CDK inhibitor in the plant, and the inhibition of cell division by ICK1 expression has profound effects on plant growth and development. They also suggest that alterations of plant organ shape can be achieved by restriction of cell division.
The cyclin-dependent protein kinases (CDKs) have a central role in cell cycle regulation and can be inhibited by the binding of small protein CDK inhibitors. The first plant CDK inhibitor gene ICK1 was previously identified in Arabidopsis thaliana. In comparison to known animal CDK inhibitors, ICK1 protein exhibits unique structural and functional properties. The expression of ICK1 directed by the constitutive CaMV 35S promoter was shown to inhibit cell division and plant growth. The aim of this study was to determine the effects of ICK1 overexpression on particular organs and cells. ICK1 was expressed in specific tissues or cells of Brassica napus L. plants using two tissue-specific promoters, Arabidopsis AP3 and Brassica Bgp1. Transgenic AP3-ICK1 plants were morphologically normal except for some modified flowers either without petals or with petals of reduced size. Surprisingly, petals of novel shapes such as tubular petals were also observed, indicating a profound effect of cell division inhibition on morphogenesis. The cell size in the smaller modified petals was similar to that in control petals, suggesting that the reduction of petal size is mainly due to the reduction of cell numbers and that the inhibition of cell division does not necessarily lead to an increase in cell size. Transgenic Bgp1-ICK1 plants were normal morphologically; however, dramatic decreases in seed production were observed in some plants. In those plants, the ability of pollen to germinate and pollen nuclear number were affected. These results are discussed in relation to the cell cycle and plant development.
Summary.The distribution of acetylated tubulin in microtubule arrays of conifer ceils was investigated by immunofluorescence techniques with 6-11B-l, a monoclonal antibody specific for posttranslationally acetylated c~-tubulins. In methacrylate sections of Pinus radiata and Pinus contorta root tip cells, acetylated tubulin was detected in mitotic spindles, phragmoplasts, and cortical microtubules. Furthermore, staining of isolated, intact cells of P. radiata and P. contorta indicated that all microtubule structures, including preprophase bands, prophase, metaphase and anaphase spindles, and phragmoplasts, contained some acetylated tubulin, and that the intensity of staining with 6-11B-1 was variable. For example, preprophase bands were lightly labelled, kinetochore fibres of anaphase spindles and phragmoplasts were heavily stained, and metaphase spindles had a granular appearance suggesting discontinuous acetylation of their constituent microtubules. This first report of the presence of acetylated tubulin in conifer cells is in contrast to our results with two species of angiosperms where no acetylated tubulin was detected. The significance of this and the variability of the intensity of staining in conifer arrays is discussed in terms of microtubule dynamics.
The cyclin-dependent kinase (CDK) plays a crucial role in regulating the cell cycle of eukaryotic organisms including plants. From previous studies, it is known that ICK1, the first plant CDK inhibitor identified in Arabidopsis plants, interacts with Arath;CycD3;1 (CycD3) and Arath;CDKA;1 (Cdc2a). Overexpression of ICK1 has major effects on cell division, plant growth, and morphology. In this study, approaches were taken to determine the effects on transgenic 35S::ICK1 Arabidopsis plants of introducing another gene that could potentially modulate the activity of ICK1. F1 plants were obtained by crossing 35S::ICK1 plants with wild type (Wt) and transgenic plants expressing 35::GUS, 35S::CycD3, 35S::CycD2, or 35S::antiICK1 (antiICK1 refers to antisense-ICK1). The major effects on plant growth and morphology observed in the 35S::ICK1 plants were partially reversed in the F1 plants from the crosses [35S::ICK1 · 35S::CycD2] and [35S::ICK1 · 35S::CycD3], and completely restored in the F1 plants from the cross [35S::ICK1 · 35S::antiICK1]. This observation was further supported by the results of ploidy analysis and structural characterization. Overexpression of CycD2 and CycD3 had the opposite effect on leaf cell size to the overexpression of ICK1. In addition, in ICK1-overexpressing plants, the CycD2 and CycD3 transcript levels increased, indicating a possible feedback regulation. The present results demonstrate that the interactions be-tween ICK1 and D-type cyclins previously observed by the yeast two-hybrid and in vitro techniques are biologically relevant. These results illustrate the possibility of modifying plant growth and architecture dynamically by adjusting the levels of positive and negative cell-cycle regulators.Keywords Arabidopsis AE Cell cycle AE Cyclin AE Cyclin-dependent kinase inhibitor AE Genetic interaction AE Plant growthAbbreviations CDK: cyclin-dependent kinase AE Cyc: cyclin AE ICK: inhibitor/interactor of cyclin-dependent kinase AE Wt: wild type Planta (2003) 216: 604-613
The distribution of tyrosinated and detyrosinated tubulin in microtubuIe arrays of pine and onion ceils was investigated by immunoftuorescence techniques. Staining of isolated ceils and methacrylate sections of Pinus radiata and Allium cepa root tips indicated that all microtubule structures contained tyrosinated tubulin but not the posttranslationally modified detyrosinated tubulin. The detyrosinated tubulin epitope was, however, created in vitro by treating both sections and fixed whole ceils with carboxypeptidase A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.