Understanding of causal biology and predictive biomarkers are lacking for hypertensive disorders of pregnancy (HDP) and preterm birth (PTB). First-trimester serum specimens from 51 cases of HDP, including 18 cases of pre-eclampsia (PE) and 33 cases of gestational hypertension (GH); 53 cases of PTB; and 109 controls were obtained from the Global Alliance to Prevent Prematurity and Stillbirth repository. Metabotyping was conducted using liquid chromatography high resolution mass spectroscopy and nuclear magnetic resonance spectroscopy. Multivariable logistic regression was used to identify signals that differed between groups after controlling for confounders. Signals important to predicting HDP and PTB were matched to an in-house physical standards library and public databases. Pathway analysis was conducted using GeneGo MetaCore. Over 400 signals for endogenous and exogenous metabolites that differentiated cases and controls were identified or annotated, and models that included these signals produced substantial improvements in predictive power beyond models that only included known risk factors. Perturbations of the aminoacyl-tRNA biosynthesis, l-threonine, and renal secretion of organic electrolytes pathways were associated with both HDP and PTB, while pathways related to cholesterol transport and metabolism were associated with HDP. This untargeted metabolomics analysis identified signals and common pathways associated with pregnancy complications.
Background & ObjectivePlacental abruption, an ischemic placental disorder, complicates about 1 in 100 pregnancies, and is an important cause of maternal and perinatal morbidity and mortality worldwide. Metabolomics holds promise for improving the phenotyping, prediction and understanding of pathophysiologic mechanisms of complex clinical disorders including abruption. We sought to evaluate maternal early pregnancy pre-diagnostic serum metabolic profiles and abnormal vaginal bleeding as predictors of abruption later in pregnancy.MethodsMaternal serum was collected in early pregnancy (mean 16 weeks, range 15 to 22 weeks) from 51 abruption cases and 51 controls. Quantitative targeted metabolic profiles of serum were acquired using electrospray ionization liquid chromatography-mass spectrometry (ESI-LC-MS/MS) and the Absolute IDQ® p180 kit. Maternal sociodemographic characteristics and reproductive history were abstracted from medical records. Stepwise logistic regression models were developed to evaluate the extent to which metabolites aid in the prediction of abruption. We evaluated the predictive performance of the set of selected metabolites using a receiver operating characteristics (ROC) curve analysis and area under the curve (AUC).ResultsEarly pregnancy vaginal bleeding, dodecanoylcarnitine/dodecenoylcarnitine (C12 / C12:1), and phosphatidylcholine acyl-alkyl C 38:1 (PC ae C38:1) strongly predict abruption risk. The AUC for these metabolites alone was 0.68, for early pregnancy vaginal bleeding alone was 0.65, and combined the AUC improved to 0.75 with the addition of quantitative metabolite data (P = 0.003).ConclusionMetabolomic profiles of early pregnancy maternal serum samples in addition to the clinical symptom, vaginal bleeding, may serve as important markers for the prediction of abruption. Larger studies are necessary to corroborate and validate these findings in other cohorts.
Temperature dictates the performance of aquatic ectotherms. However, the physiological and biochemical processes that drive thermally-mediated life history patterns (and limits) remain poorly understood because they are rarely studied simultaneously. In our previous work, we have established life history outcomes (e.g., survivorship, development time, growth rates, and fitness) in mayflies (Neocloeon triangulifer) reared at static temperatures ranging from 14 to 30 • C at 2 • C intervals. In this study, we conducted biochemical measurements (RT-qPCR of select genes and targeted, quantitative metabolomic profiling) on N. triangulifer mature larvae reared at temperatures associated with excellent survival and fitness (22-24 • C), compromised survival and fitness (28 • C), and chronic lethality (30 • C-larvae survived for a few weeks but failed to emerge to adulthood). Patterns of gene expression were similar to those observed in acute ramping experiments reported previously: larvae reared at 30 • C resulted in significant upregulation in the thermally responsive gene HEAT SHOCK PROTEIN 90 (HSP90) but no significant changes in hypoxia responsive genes [EGG LAYING DEFECTIVE 9 (EGL-9) and LACTATE DEHYDROGENASE (LDH)]. Additionally, primers for genes associated with energy: INSULIN RECEPTOR (IR), mechanistic TARGET OF RAPAMYCIN (mTOR), and TREHALOSE 6 PHOSPHATE SYNTHASE (T6PS) were developed for this study. IR and mTOR were significantly upregulated while T6PS showed trend of downregulation in larvae reared at 30 • C. Metabolomic profiles revealed general depletion of lipids and acylcarnitines in larvae exposed to chronic thermal stress, suggesting that larvae were energetically challenged despite continuous access to food. For example, concentrations of lysoPhosphatidylcholine (lysoPC) a C20:3 decreased as fitness decreased with increasing temperature (2.3-and 2.4-fold at 28 and 30 • C relative Chou et al. Physiological Mechanisms and Thermal Limits to controls). Tissue concentrations of the biogenic amine histamine increased 2.1-and 3.1-fold with increasing temperature, and were strongly and negatively correlated with performance. Thus, both histamine and lysoPC a C20:3 are potential biomarkers of thermal stress. Taken together, our results primarily associate energetic challenge with thermally mediated fitness reduction in N. triangulifer.
Little is known about the metabolism of acetylenic (C&tbd1;C) compounds commonly used in the formulation of pesticides. To better understand the in vivo reactivity of this bond, we examined the metabolism of propargyl alcohol (PA), 2-propyn-1-ol, used extensively in the chemical industry. [1,2,3-(13)C, 2,3-(14)C]PA was administered orally to male Sprague-Dawley rats. Approximately 56% of the dose was excreted in urine by 96 h. Major metabolites were characterized, directly, in the whole urine by one- and two-dimensional (13)C NMR. To determine the complete structures of metabolites of PA, rat urine was also subjected to TLC followed by purification of separated TLC bands on HPLC. The purified metabolites were identified by (13)C NMR and mass spectrometry and by comparison with available synthetic standards. The proposed metabolic pathway involves oxidation of propargyl alcohol to 2-propynoic acid and further detoxification via glutathione conjugation to yield as final products: 3, 3-bis[(2-(acetylamino)-2-carboxyethyl)thio]-1-propanol, 3-(carboxymethylthio)-2-propenoic acid, 3-(methylsulfinyl)-2-(methylthio)-2-propenoic acid, 3-[[2-(acetylamino)-2-carboxyethyl]thio]-3-[(2-amino-2-carboxyethyl)t hio]-1-propanol and 3-[[2-(acetylamino)-2-carboxyethyl]sulfinyl]-3-[2-(acetylamino)-2-car boxyethyl]thio]-1-propanol. These unique metabolites have not been reported previously and represent the first example of multiple glutathione additions to the carbon-carbon triple bond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.