Knowledge of the life history and ecological characteristics of woody plant species allow predictions of the level and distribution of genetic diversity within and among populations. Generalizations developed from such analyses can be used to develop sampling strategies for the preservation of genetic diversity.Abstract.The plant allozyme literature was reviewed to: (1) compare genetic diversity in long-lived woody species with species representing other life forms, and (2) to investigate whether the levels and distribution of genetic diversity in woody species are related to life history and ecological characteristics. Data from 322 woody taxa were used to measure genetic diversity within species, and within and among populations of species. Woody species maintain more variation within species and within populations than species with other life forms but have less variation among populations. Woody species with large geographic ranges, outcrossing breeding systems, and wind or animal-ingested seed dispersal have more genetic diversity within species and populations but less variation among populations than woody species with other combinations of traits. Although life history and ecological traits explain a significant proportion (34%) of the variation among species for the genetic parameters measured, a large proportion of the interspecific variation is unexplained. The specific evolutionary history of each species must play an important role in determining the level and distribution of genetic diversity.
Unlike most of its close relatives, Arabidopsis thaliana is capable of self-pollination. In other members of the mustard family, outcrossing is ensured by the complex self-incompatibility (S) locus,which harbors multiple diverged specificity haplotypes that effectively prevent selfing. We investigated the role of the S locus in the evolution of and transition to selfing in A. thaliana. We found that the S locus of A. thaliana harbored considerable diversity, which is an apparent remnant of polymorphism in the outcrossing ancestor. Thus, the fixation of a single inactivated S-locus allele cannot have been a key step in the transition to selfing. An analysis of the genome-wide pattern of linkage disequilibrium suggests that selfing most likely evolved roughly a million years ago or more.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.