Background: Some preventable deaths in hospitalized patients are due to unrecognized deterioration. There are no publications of studies that have instituted routine patient monitoring postoperatively and analyzed impact on patient outcomes. Methods: The authors implemented a patient surveillance system based on pulse oximetry with nursing notification of violation of alarm limits via wireless pager. Data were collected for 11 months before and 10 months after implementation of the system. Concurrently, matching outcome data were collected on two other postoperative units. The primary outcomes were rescue events and transfers to the intensive care unit compared before and after monitoring change. Results: Rescue events decreased from 3.4 (1.89 -4.85) to 1.2 (0.53-1.88) per 1,000 patient discharges and intensive care unit transfers from 5.6 (3.7-7.4) to 2.9 (1.4 -4.3) per 1,000 patient days, whereas the comparison units had no change. Conclusions: Patient surveillance monitoring results in a reduced need for rescues and intensive care unit transfers.
Failure-to-Rescue, defined as hospital deaths after adverse events, is an established measure of patient safety and hospital quality. Until recently, approaches used to address failure-to-rescue have been focused primarily on improvement of response to a recognized patient crisis, with limited success in terms of patient outcomes. Less attention has been paid to improving the detection of the crisis. A wealth of retrospective data exist to support the observation that adverse events in general ward patients are preceded by a significant period (on the order of hours) of physiologic deterioration. Thus, the lack of early recognition of physiologic decline plays a major role in the failure-to-rescue problem.
Most comparisons of wireless ad hoc routing algorithms involve simulated or indoor trial runs, or outdoor runs with only a small number of nodes, potentially leading to an incorrect picture of algorithm performance. In this paper, we report on an outdoor comparison of four different routing algorithms, APRL, AODV, ODMRP, and STARA, running on top of thirty-three 802.11-enabled laptops moving randomly through an athletic field. This comparison provides insight into the behavior of ad hoc routing algorithms at larger real-world scales than have been considered so far. In addition, we compare the outdoor results with both indoor ("tabletop") and simulation results for the same algorithms, examining the differences between the indoor results and the outdoor reality. Finally, we describe the software infrastructure that allowed us to implement the ad hoc routing algorithms in a comparable way, and use the same codebase for indoor, outdoor, and simulated trial runs.
In a cohort of patients with prolonged desaturations, manual recordings of SpO2 did not reflect physiologic patient state when compared with continuous automated sampling. Currently, early warning scores depend on manual vital sign recordings in many settings; the study data suggest that SpO2 ought to be added to the list of vital sign values that have been shown to be recorded inaccurately.
Short-term outcome of critically ill cancer patients in ICU is better than previously reported. The decision to admit cancer patients to ICU should depend on the severity of the acute illness rather than factors related to the malignancy. In appropriate patients, invasive organ support and re-admission should not be withheld.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.