The blood system is maintained by a small pool of haematopoietic stem cells (HSCs), which are required and sufficient for replenishing all human blood cell lineages at millions of cells per second throughout life. Megakaryocytes in the bone marrow are responsible for the continuous production of platelets in the blood, crucial for preventing bleeding--a common and life-threatening side effect of many cancer therapies--and major efforts are focused at identifying the most suitable cellular and molecular targets to enhance platelet production after bone marrow transplantation or chemotherapy. Although it has become clear that distinct HSC subsets exist that are stably biased towards the generation of lymphoid or myeloid blood cells, we are yet to learn whether other types of lineage-biased HSC exist or understand their inter-relationships and how differently lineage-biased HSCs are generated and maintained. The functional relevance of notable phenotypic and molecular similarities between megakaryocytes and bone marrow cells with an HSC cell-surface phenotype remains unclear. Here we identify and prospectively isolate a molecularly and functionally distinct mouse HSC subset primed for platelet-specific gene expression, with enhanced propensity for short- and long-term reconstitution of platelets. Maintenance of platelet-biased HSCs crucially depends on thrombopoietin, the primary extrinsic regulator of platelet development. Platelet-primed HSCs also frequently have a long-term myeloid lineage bias, can self-renew and give rise to lymphoid-biased HSCs. These findings show that HSC subtypes can be organized into a cellular hierarchy, with platelet-primed HSCs at the apex. They also demonstrate that molecular and functional priming for platelet development initiates already in a distinct HSC population. The identification of a platelet-primed HSC population should enable the rational design of therapies enhancing platelet output.
Bardet-Biedl syndrome (BBS) and Laurence-Moon syndrome (LMS) have a similar phenotype, which includes retinal dystrophy, obesity, and hypogenitalism. They are differentiated by the presence of spasticity and the absence of polydactyly in LMS. The aims of this study were to describe the epidemiology of BBS and LMS, further define the phenotype, and examine genotype-phenotype correlation. The study involved 46 patients (26 males, 20 females) from 26 families, with a median age of 44 years (range 1-68 years). Assessments were performed in 1986, 1993, and 2001 and included neurological assessments, anthropometric measurements, and clinical photographs to assess dysmorphic features. The phenotype was highly variable within and between families. Impaired co-ordination and ataxia occurred in 86% (18/21). Thirty percent (14/46) met criteria for psychiatric illness; other medical problems included cholecystectomy in 37% (17/46) and asthma in 28% (13/46). Dysmorphic features included brachycephaly, large ears, and short, narrow palpebral fissures. There was no apparent correlation of clinical or dysmorphic features with genotype. Two patients were diagnosed clinically as LMS but both had mutations in a BBS gene. The features in this population do not support the notion that BBS and LMS are distinct. The lack of a genotype-phenotype correlation implies that BBS proteins interact and are necessary for the development of many organs.
RAB, ADP-ribosylation factors (ARFs) and ARF-like (ARL) proteins belong to the Ras superfamily of small GTP-binding proteins and are essential for various membrane-associated intracellular trafficking processes 1,2 . None of the B50 known members of this family are linked to human disease. Using a bioinformatic screen for ciliary genes in combination with mutational analyses, we identified ARL6 as the gene underlying Bardet-Biedl syndrome type 3, a multisystemic disorder characterized by obesity, blindness, polydactyly, renal abnormalities and cognitive impairment 3,4 . We uncovered four different homozygous substitutions in ARL6 in four unrelated families affected with Bardet-Biedl syndrome, two of which disrupt a threonine residue important for GTP binding 5 and function 5-7 of several related small GTP-binding proteins. Analysis of the Caenorhabditis elegans ARL6 homolog indicates that it is specifically expressed in ciliated cells, and that, in addition to the postulated cytoplasmic functions of ARL proteins, it undergoes intraflagellar transport. These findings implicate a small GTP-binding protein in ciliary transport and the pathogenesis of a pleiotropic disorder.Cilia and flagella are ancient, evolutionarily conserved eukaryotic organelles that project from cells and have been adapted by organisms to carry out diverse biological functions 8 . The assembly, maintenance and function of cilia and flagella depend on intraflagellar transport (IFT), and defects in this microtubule-based transport process and the function of cilia are associated with several human diseases, including Bardet-Biedl syndrome (BBS) [8][9][10] . Genes underlying seven of the eight loci known to be associated with BBS have been identified 4,11 ; only the gene mutated in BBS type 3 (called BBS3), previously mapped to 3p12 (refs. 12,13), remained unidentified. BBS is thought to result largely from ciliary dysfunction, because loss-of-function mutations in C. elegans bbs-7 and bbs-8 compromise cilia structure and function 14 and RNA interference of Chlamydomonas BBS5 results in the loss of flagella 11 . Notably, all known C. elegans bbs genes are expressed exclusively in cells with cilia, owing to the presence of a DAF-19 RFX transcription factor binding site (X box) in their promoters 10,11 . We hypothesized that the C. elegans ortholog of human BBS3 would also contain this regulatory element, which would allow us to identify candidates from the 490 genes that map to the BBS3 critical interval 12,13,15 . We generated a consensus X-box sequence from a training set of 14 C. elegans genes containing X boxes that are known to be strictly expressed in ciliated cells and used them to scan the C. elegans genome. We identified 368 genes with an X-box sequence within 1.5 kb of the start codon, 168 of which had a bona fide human ortholog (E value r 10 À6 ); three of these fell in the BBS3 critical interval (Fig. 1a). The first gene, ESRRBL1, is probably the human ortholog of C. elegans che-13. che-13 is expressed exclusively in ciliated neurons ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.