In skeletal muscle, as in any mammalian tissue, protein levels are dictated by relative rates of protein synthesis and breakdown. Recent studies have shown that the ubiquitin-proteasome-dependent proteolytic pathway is mainly responsible for the breakdown of myofibrillar proteins. In this pathway proteins that are to be degraded are first tagged with a polyubiquitin degradation signal. Ubiquitination is performed by the ubiquitin-activating enzyme, ubiquitin-conjugating enzymes and ubiquitin-protein ligases, which are responsible for the recognition of specific substrates. Polyubiquitinated protein substrates are then specifically recognised and degraded by the 26S proteasome. The present review focuses on: (1) the mechanisms of ubiquitination-deubiquitination that make the system highly selective; (2) the mechanisms of proteolysis in skeletal muscle. In particular, the role of the system in the remodelling of skeletal muscle during exercise and disuse and in recovery or regeneration that prevails during post-atrophic conditions is reviewed.
Kaposi sarcoma (KS) is an angioproliferative inflammatory condition that occurs commonly in patients infected with human immunodeficiency virus (HIV). Inflammatory cytokines and growth factors promote the development of KS. Because physiologically important cytokine polymorphisms modulate host inflammatory responses, we investigated the association between KS and common regulatory polymorphisms in 5 proinflammatory cytokine genes encoding interleukin (IL) IL-1α, IL-1β, tumor necrosis factor (TNF) α, TNF-β, and IL-6 and in the IL-1 receptor antagonist (IL1RN). We also examined the contribution of stromal-derived factor 1 and chemokine receptor 5 (Δ32) polymorphisms to KS development. The population consisted of 115 HIV-infected men with KS and 126 deceased HIV-infected men without KS. The only strong association was observed between an IL6promoter polymorphism (G-174C) and susceptibility to KS in HIV-infected men (P = .0035). Homozygotes for IL6 allele G, associated with increased IL6 production, were overrepresented among patients with KS (P = .0046), whereas allele C homozygotes were underrepresented (P = .0062). Substantial in vitro evidence indicates that IL-6 contributes to the pathogenesis of KS. Our results show thatIL6 promoter genotypes associated with altered gene expression are risk factors for development of KS. Identification of a genetic risk factor for development of KS has important clinical implications for prevention and therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.