Psychiatric disorders have clear heritable risk. Several large-scale genome-wide association studies have revealed a strong association between susceptibility for psychiatric disorders, including bipolar disease, schizophrenia, and major depression, and a haplotype located in an intronic region of the L-type voltage gated calcium channel (VGCC) subunit gene CACNA1C (peak associated SNP rs1006737), making it one of the most replicable and consistent associations in psychiatric genetics. In the current study, we used induced human neurons to reveal a functional phenotype associated with this psychiatric risk variant. We generated induced human neurons, or iN cells, from more than 20 individuals harboring homozygous risk genotypes, heterozygous, or homozygous non-risk genotypes at the rs1006737 locus. Using these iNs, we performed electrophysiology and quantitative PCR experiments that demonstrated increased L-type VGCC current density as well as increased mRNA expression of CACNA1C in induced neurons homozygous for the risk genotype, compared to non-risk genotypes. These studies demonstrate that the risk genotype at rs1006737 is associated with significant functional alterations in human induced neurons, and may direct future efforts at developing novel therapeutics for the treatment of psychiatric disease.
Vertebral compression fractures (VCFs), the most common fragility fractures, account for approximately 700,000 injuries per year. Since open surgery involves morbidity and implant failure in the osteoporotic patient population, new minimally invasive biological solution to vertebral bone repair is needed. Previously, we showed that adipose-derived stem cells (ASCs) overexpressing a BMP gene are capable of inducing spinal fusion in vivo. We hypothesized that a direct injection of ASCs, designed to transiently overexpress rhBMP6, into a vertebral bone void defect would accelerate bone regeneration. Porcine ASCs were isolated and labeled with lentiviral vectors that encode for the reporter gene luciferase (Luc) under constitutive (ubiquitin) or inductive (osteocalcin) promoters. The ASCs were first labeled with reporter genes and then nucleofected with an rhBMP6-encoding plasmid. Twenty-four hours later, bone void defects were created in the coccygeal vertebrae of nude rats. The ASC-BMP6 cells were suspended in fibrin gel (FG) and injected into the bone void. A control group was injected with FG alone. The regenerative process was monitored in vivo using microCT, and cell survival and differentiation were monitored using tissue specific reporter genes and bioluminescence imaging (BLI). The surgically treated vertebrae were harvested after 12 weeks and subjected to histological and immunohistochemical (against porcine vimentin) analyses. In vivo BLI detected Luc-expressing cells at the implantation site over a 12-week period. Beginning 2 weeks postoperatively, considerable defect repair was observed in the group treated with ASC-BMP6 cells. The rate of bone formation in the stem cell–treated group was two times faster than that in the FG–treated group, and bone volume at the endpoint was twofold compared to the control group. Twelve weeks after cell injection the bone volume within the void reached the volume measured in native vertebrae. Immunostaining against porcine vimentin indicated that the ASC-BMP6 cells contributed to new bone formation. Here we show the potential of injections of BMP-modified ASCs to repair vertebral bone defects in a rat model. Our results could pave the way to a novel approach for the biological treatment of traumatic and osteoporosis-related vertebral bone injuries.
Allografts may be useful in craniofacial bone repair, although they often fail to integrate with the host bone. We hypothesized that intermittent administration of parathyroid hormone (PTH) would enhance mesenchymal stem cell recruitment and differentiation, resulting in allograft osseointegration in cranial membranous bones. Calvarial bone defects were created in transgenic mice, in which luciferase is expressed under the control of the osteocalcin promoter. The mice were given implants of allografts with or without daily PTH treatment. Bioluminescence imaging (BLI) was performed to monitor host osteprogenitor differentiation at the implantation site. Bone formation was evaluated with the aid of fluorescence imaging (FLI) and micro–computed tomography (μCT) as well as histological analyses. Reverse transcription polymerase chain reaction (RT-PCR) was performed to evaluate the expression of key osteogenic and angiogenic genes. Osteoprogenitor differentiation, as detected by BLI, in mice treated with an allograft implant and PTH was over 2-fold higher than those in mice treated with an allograft implant without PTH. FLI also demonstrated that the bone mineralization process in PTH-treated allografts was significantly higher than that in untreated allografts. The μCT scans revealed a significant increase in bone formation in Allograft + PTH–treated mice comparing to Allograft + PBS treated mice. The osteogenic genes osteocalcin (Oc/Bglap) and integrin binding sialoprotein (Ibsp) were upregulated in the Allograft + PTH–treated animals. In summary, PTH treatment enhances osteoprogenitor differentiation and augments bone formation around structural allografts. The precise mechanism is not clear, but we show that infiltration pattern of mast cells, associated with the formation of fibrotic tissue, in the defect site is significantly affected by the PTH treatment.
Upregulation of the cAMP/protein kinase A (PKA) pathway has been shown to result in decreased proliferation, increased differentiation, and subsequent apoptosis of malignant glioma cells. Conventional cAMP analogs, however, are difficult to use in a clinical setting. Therefore, we investigated the effects of rolipram, a drug that has undergone clinical trials as an antidepressant and has also been proposed as a treatment for multiple sclerosis. Rolipram acts as a specific inhibitor of type IV phosphodiesterase (PDE4), leading to increased intracellular levels of cAMP. We report that the inhibition of PDE4 by rolipram results in the activation of the cAMP/PKA pathway, with potent stimulation of a reporter gene containing a cAMP-responsive element in its promoter region. Further, treatment of the human glioma cell line A-172 with rolipram results in increased expression of the cell cycle inhibitors p21(Cip1) and p27(KiP1), and decreased activity of cdk2, a cyclin-dependent kinase essential for cell cycle progression. As a result, the proliferation of A-172 cells is inhibited, with induction of a Gl block. Eventually, rolipram-treated A-172 cells undergo differentiation, which is followed by apoptotic cell death. As we observe this effect with other glioma cell cultures as well, our results suggest that rolipram could prove useful as a novel differentiating agent with both cytostatic and cytotoxic potential in the treatment of malignant gliomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.