Upregulation of the cAMP/protein kinase A (PKA) pathway has been shown to result in decreased proliferation, increased differentiation, and subsequent apoptosis of malignant glioma cells. Conventional cAMP analogs, however, are difficult to use in a clinical setting. Therefore, we investigated the effects of rolipram, a drug that has undergone clinical trials as an antidepressant and has also been proposed as a treatment for multiple sclerosis. Rolipram acts as a specific inhibitor of type IV phosphodiesterase (PDE4), leading to increased intracellular levels of cAMP. We report that the inhibition of PDE4 by rolipram results in the activation of the cAMP/PKA pathway, with potent stimulation of a reporter gene containing a cAMP-responsive element in its promoter region. Further, treatment of the human glioma cell line A-172 with rolipram results in increased expression of the cell cycle inhibitors p21(Cip1) and p27(KiP1), and decreased activity of cdk2, a cyclin-dependent kinase essential for cell cycle progression. As a result, the proliferation of A-172 cells is inhibited, with induction of a Gl block. Eventually, rolipram-treated A-172 cells undergo differentiation, which is followed by apoptotic cell death. As we observe this effect with other glioma cell cultures as well, our results suggest that rolipram could prove useful as a novel differentiating agent with both cytostatic and cytotoxic potential in the treatment of malignant gliomas.
The cubic phase of monoolein (MO) has successfully been used for crystallization of membrane proteins. It is likely that the transition to a lamellar phase upon dehydration is important for the crystallization process, and that the internal dimensions of the lipid phases (i.e., water pore diameter) are crucial for the inclusion and the diffusion of membrane proteins. In the present study, we investigated the cubic-to-lamellar phase transitions in the MO-water and the MO-distearoyl phosphatidyl glycerol (DSPG) systems. The MO-water system was investigated by means of isothermal sorption and desorption microcalorimetry. We show that the transition from cubic to lamellar phase induced by desorption is driven by entropy. At 25 degrees C, this occurs at a water activity of 0.98 with a transition enthalpy of 860 J/mol (MO). The phase behavior was also investigated in the presence of a small amount of the transmembrane protein bacteriorhodopsin (bR), and a detergent, octyl glucoside (OG), and it was shown that both bR and OG stabilize the lamellar phase. Analogous results were obtained for the MO-DSPG-water system. The latter system resembles the MO-water system in that a cubic-to-lamellar phase transition is induced by dehydration, although the structural properties of these phases are slightly different. Finally, we demonstrate that bR can be crystallized from a cubic phase of MO-DSPG-buffer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.