Protease-activated receptors (PARs) are a family of G-protein-coupled receptors (GPCRs) that are irreversibly activated by proteolytic cleavage of the N terminus, which unmasks a tethered peptide ligand that binds and activates the transmembrane receptor domain, eliciting a cellular cascade in response to inflammatory signals and other stimuli. PARs are implicated in a wide range of diseases, such as cancer and inflammation. PARs have been the subject of major pharmaceutical research efforts but the discovery of small-molecule antagonists that effectively bind them has proved challenging. The only marketed drug targeting a PAR is vorapaxar, a selective antagonist of PAR1 used to prevent thrombosis. The structure of PAR1 in complex with vorapaxar has been reported previously. Despite sequence homology across the PAR isoforms, discovery of PAR2 antagonists has been less successful, although GB88 has been described as a weak antagonist. Here we report crystal structures of PAR2 in complex with two distinct antagonists and a blocking antibody. The antagonist AZ8838 binds in a fully occluded pocket near the extracellular surface. Functional and binding studies reveal that AZ8838 exhibits slow binding kinetics, which is an attractive feature for a PAR2 antagonist competing against a tethered ligand. Antagonist AZ3451 binds to a remote allosteric site outside the helical bundle. We propose that antagonist binding prevents structural rearrangements required for receptor activation and signalling. We also show that a blocking antibody antigen-binding fragment binds to the extracellular surface of PAR2, preventing access of the tethered ligand to the peptide-binding site. These structures provide a basis for the development of selective PAR2 antagonists for a range of therapeutic uses.
Supported lipid bilayers (SLBs) have contributed invaluable information about the physiochemical properties of cell membranes, but their compositional simplicity often limits the level of knowledge that can be gained about the structure and function of transmembrane proteins in their native environment. Herein, we demonstrate a generic protocol for producing polymer-supported lipid bilayers on glass surfaces that contain essentially all naturally occurring cell-membrane components of a cell line while still retaining transmembrane protein mobility and activity. This was achieved by merging vesicles made from synthetic lipids (PEGylated lipids and POPC lipids) with native cell-membrane vesicles to generate hybrid vesicles which readily rupture into a continuous polymer-supported lipid bilayer. To investigate the properties of these complex hybrid SLBs and particularly the behavior of their integral membrane-proteins, we used total internal reflection fluorescence imaging to study a transmembrane protease, β-secretase 1 (BACE1), whose ectoplasmic and cytoplasmic domains could both be specifically targeted with fluorescent reporters. By selectively probing the two different orientations of BACE1 in the resulting hybrid SLBs, the role of the PEG-cushion on transmembrane protein lateral mobility was investigated. The results reveal the necessity of having the PEGylated lipids present during vesicle adsorption to prevent immobilization of transmembrane proteins with protruding domains. The proteolytic activity of BACE1 was unadulterated by the sonication process used to merge the synthetic and native membrane vesicles; importantly it was also conserved in the SLB. The presented strategy could thus serve both fundamental studies of membrane biophysics and the production of surface-based bioanalytical sensor platforms.
The rapid increase of antibiotic resistance has created an urgent need to develop novel antimicrobial agents. Here we describe the crystal structure of the promising bacterial target phospho-N-acetylmuramoyl-pentapeptide translocase (MraY) in complex with the nucleoside antibiotic tunicamycin. The structure not only reveals the mode of action of several related natural-product antibiotics but also gives an indication on the binding mode of the MraY UDP-MurNAc-pentapeptide and undecaprenyl-phosphate substrates.
Bacterial drug resistance is a serious concern for human health. Multidrug efflux pumps export a broad variety of substrates out of the cell and thereby convey resistance to the host. In Escherichia coli, the AcrB:AcrA:TolC efflux complex forms a principal transporter for which structures of the individual component proteins have been determined in isolation. Here, we present the X-ray structure of AcrB in complex with a single transmembrane protein, assigned by mass spectrometry as YajC. A specific rotation of the periplasmic porter domain of AcrB is also revealed, consistent with the hypothesized "twist-to-open" mechanism for TolC activation. Growth experiments with yajc-deleted E. coli reveal a modest increase in the organism's susceptibility to beta-lactam antibiotics, but this effect could not conclusively be attributed to the loss of interactions between YajC and AcrB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.