Plants counteract fluctuations in water supply by regulating all aquaporins in the cell plasma membrane. Channel closure results either from the dephosphorylation of two conserved serine residues under conditions of drought stress, or from the protonation of a conserved histidine residue following a drop in cytoplasmic pH due to anoxia during flooding. Here we report the X-ray structure of the spinach plasma membrane aquaporin SoPIP2;1 in its closed conformation at 2.1 A resolution and in its open conformation at 3.9 A resolution, and molecular dynamics simulations of the initial events governing gating. In the closed conformation loop D caps the channel from the cytoplasm and thereby occludes the pore. In the open conformation loop D is displaced up to 16 A and this movement opens a hydrophobic gate blocking the channel entrance from the cytoplasm. These results reveal a molecular gating mechanism which appears conserved throughout all plant plasma membrane aquaporins.
Highlights d Hypoxia triggers an increase in AQP4-mediated flux of water into astrocytes d Translocation of AQP4 to the astrocyte cell surface drives increased water flux d AQP4 cell-surface localization is mediated by a CaM-and PKA-dependent mechanism d Inhibition of AQP4 localization with the licensed drug TFP halts CNS edema in rats
Human aquaporin 5 (HsAQP5) facilitates the transport of water across plasma membranes and has been identified within cells of the stomach, duodenum, pancreas, airways, lungs, salivary glands, sweat glands, eyes, lacrimal glands, and the inner ear. AQP5, like AQP2, is subject to posttranslational regulation by phosphorylation, at which point it is trafficked between intracellular storage compartments and the plasma membrane. Details concerning the molecular mechanism of membrane trafficking are unknown. Here we report the x-ray structure of HsAQP5 to 2.0-Å resolution and highlight structural similarities and differences relative to other eukaryotic aquaporins. A lipid occludes the putative central pore, preventing the passage of gas or ions through the center of the tetramer. Multiple consensus phosphorylation sites are observed in the structure and their potential regulatory role is discussed. We postulate that a change in the conformation of the C terminus may arise from the phosphorylation of AQP5 and thereby signal trafficking.membrane protein ͉ trafficking ͉ crystallography ͉ water channel protein ͉ heterologous overexpression A quaporins (1) facilitate the flow of water across cellular membranes while preserving ion concentration gradients. By maintaining water homeostasis within cells, aquaporin family members play essential physiological roles within all kingdoms of life. They form a large superfamily containing both pure water channels, and channels also permeable to other small polar molecules such as glycerol (2). Thirteen human aquaporin (AQP) isoforms have been identified, and they govern a broad spectrum of physiological functions (2, 3). Examples include concentration of urine in the kidneys, release of tears and maintenance of lens transparency in the eye, maintenance of water homeostasis within the brain, the extrusion of sweat from the skin, control of glycerol concentration in fat metabolism, and facilitation of cell migration during angiogenesis.X-ray and electron diffraction studies have yielded crystal structures of mammalian AQP0 (4-6), AQP1 (7, 8), AQP2 (9), and AQP4 (10), plant SoPIP2;1 (11, 12), bacterial AQPZ (13,14), and GlpF (15), and the archaeal AQPM (16). These structures establish that phylogenetically and functionally diverse AQPs arrange as homotetramers, each protomer containing six highly conserved transmembrane (TM) ␣-helices. Two half-helices form a pseudoseventh TM helix because of the insertion of loops B and E into the membrane from opposite sides, placing both copies of the highly conserved Asn-Pro-Ala (NPA) AQP signature motif near the center of the water channel. The conserved aromatic/arginine (ar/R) constriction region imposes substrate selectivity on the channel (17). A consensus has emerged from molecular dynamics simulations regarding the mechanism of water transport and ion exclusion (18) establishing that an electrostatic potential barrier peaking at the NPA region prevents the cotranslocation of protons through the channel.Although the tissue-specific expressio...
a b s t r a c tAquaporin-mediated water transport across cellular membranes is an ancient, ubiquitous mechanism within cell biology. This family of integral membrane proteins includes both water selective pores (aquaporins) and transport facilitators of other small molecules such as glycerol and urea (aquaglyceroporins). Eukaryotic aquaporins are frequently regulated post-translationally by gating, whereby the rate of flux through the channel is controlled, or by trafficking, whereby aquaporins are shuttled from intracellular storage sites to the plasma membrane. A number of high-resolution X-ray structures of eukaryotic aquaporins have recently been reported and the new structural insights into gating and trafficking that emerged from these studies are described. Basic structural themes reoccur, illustrating how the problem of regulation in diverse biological contexts builds upon a limited set of possible solutions.
Human aquaporin 2 (AQP2) is a water channel found in the kidney collecting duct, where it plays a key role in concentrating urine. Water reabsorption is regulated by AQP2 trafficking between intracellular storage vesicles and the apical membrane. This process is tightly controlled by the pituitary hormone arginine vasopressin and defective trafficking results in nephrogenic diabetes insipidus (NDI). Here we present the X-ray structure of human AQP2 at 2.75 Å resolution. The C terminus of AQP2 displays multiple conformations with the C-terminal α-helix of one protomer interacting with the cytoplasmic surface of a symmetry-related AQP2 molecule, suggesting potential protein-protein interactions involved in cellular sorting of AQP2. Two Cd 2+ -ion binding sites are observed within the AQP2 tetramer, inducing a rearrangement of loop D, which facilitates this interaction. The locations of several NDI-causing mutations can be observed in the AQP2 structure, primarily situated within transmembrane domains and the majority of which cause misfolding and ER retention. These observations provide a framework for understanding why mutations in AQP2 cause NDI as well as structural insights into AQP2 interactions that may govern its trafficking.membrane protein | X-ray crystallography | water channel protein W ater is the major ingredient of the human body, constituting 55-65% of our total body weight (1). Water homeostasis is maintained by the kidneys, which filter ∼180 L of primary urine every day. Although most water is constitutively reabsorbed in the proximal tubules and descending limbs of Henle (2), the body's water balance is fine-tuned by regulated water reabsorption, which takes place in the kidney collecting duct. Water reabsorption is mediated by aquaporins, membranebound water channels, of which seven of the 13 human isoforms have been located in the human kidney (3). Of these, human aquaporin 2 (AQP2) is present in the principal cells of the collecting duct and is responsible for regulated water reabsorption.AQP2 is stored in intracellular vesicles under water-saturating conditions. When the levels of the pituitary antidiuretic hormone arginine vasopressin (AVP) are elevated in response to dehydration or hypernatremia, AVP binding to the vasopressin 2 receptor (V2R) in the basolateral membrane stimulates an increase in intracellular cAMP. This triggers the phosphorylation of Ser256 in the AQP2 C terminus by protein kinase A (PKA) and flags the protein for trafficking from storage vesicles to the apical membrane (4-6). AVP also triggers additional phosphorylation at Ser264 and Ser269 (7,8), with all three sites being phosphorylated in AQP2s targeted to the plasma membrane (9). The resulting redistribution of AQP2 increases transcellular water permeability and concentrates urine (Fig. S1). Once correct water balance is restored, AQP2 is internalized through ubiquitinmediated endocytosis and redirected to storage vesicles or targeted for degradation (10-12).Because of its central role in water homeostasis, dysregula...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.