Grain hardness is an important quality trait in wheat. This trait is related to the variation in, and the presence of, puroindolines (PINA and PINB). This variation can be increased by the allelic polymorphism present in the Aegilops species that are related to wheat. This study evaluated allelic Pina and Pinb gene variability in five diploid species of the Aegilops genus, along with the molecular characterization of the main allelic variants found in each species. This polymorphism resulted in 16 alleles for the Pina gene and 24 alleles for the Pinb gene, of which 10 and 17, respectively, were novel. Diverse mutations were detected in the deduced mature proteins of these alleles, which could influence the hardness characteristics of these proteins. This study shows that the diploid species of the Aegilops genus could be a good source of genetic variability for both Pina and Pinb genes, which could be used in breeding programmes to extend the range of different textures in wheat.
In multiphase fermentations where the product forms a second liquid phase or where solvents are added for product extraction, turbulent conditions disperse the oil phase as droplets. Surface-active components (SACs) present in the fermentation broth can stabilize the product droplets thus forming an emulsion. Breaking this emulsion increases process complexity and consequently the production cost. In previous works, it has been proposed to promote demulsification of oil/supernatant emulsions in an off-line batch bubble column operating at low gas flow rate. The aim of this study is to test the performance of this recovery method integrated to a fermentation, allowing for continuous removal of the oil phase. A 500 mL bubble column is successfully integrated with a 2 L reactor during 24 h without affecting cell growth or cell viability. However, higher levels of surfactants and emulsion stability are measured in the integrated system compared to a base case, reducing its capacity for oil recovery. This is related to release of SACs due to cellular stress when circulating through the recovery column. Therefore, it is concluded that the gas bubble-induced oil recovery method allows for oil separation and cell recycling without compromising fermentation performance; however, tuning of the column parameters considering increased levels of SACs due to cellular stress is required for improving oil recovery.
A high level of genetic diversity was found in LMW-i genes from Triticum urartu, resulting in detection of 11 novel alleles. The variability detected could affect gluten quality. Low-molecular weight glutenin subunits are important in determining the viscoelastic properties of wheat dough. Triticum urartu Thum. ex Gandil., which is related to the A genome of polyploid wheat, has been shown as a good source of variation for these subunits. The present study evaluated the variability of LMW-i genes in this species. High polymorphism was found in the sequences analysed and resulted in the detection of 11 novel alleles, classified into two sets (Group-I and -II) showing unique SNPs and InDels. Both groups were associated with Glu-A3-1 genes from common wheat. In general, deduced proteins from Group-II genes possessed a higher proportion of glutamine and proline, which has been previously suggested to be related with good quality. Moreover, there were other changes compared to common wheat. This novel variation could affect dough quality. Additional epitopes for celiac disease were also detected, suggesting that these subunits could be highly reactive. The results showed that T. urartu could be an important source of genetic variability for LMW-i genes that could enlarge the genetic pool of modern wheat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.