We show that mitochondrial dynamics proteins are required for epithelial repair. Drp1 loss-offunction leads to defects in the dynamics of cytosolic and mitochondrial calcium, ROS production and F-actin upon wounding.
In epithelial tissues, cells tightly connect to each other through cell-cell junctions, but they also present the remarkable capacity of reorganizing themselves without compromising tissue integrity. Upon injury, simple epithelia efficiently resolve small lesions through the action of actin cytoskeleton contractile structures at the wound edge and cellular rearrangements. However, the underlying mechanisms and how they cooperate are still poorly understood. In this study, we combine live imaging and theoretical modeling to reveal a novel and indispensable role for occluding junctions (OJs) in this process. We demonstrate that OJ loss of function leads to defects in wound-closure dynamics: instead of contracting, wounds dramatically increase their area. OJ mutants exhibit phenotypes in cell shape, cellular rearrangements, and mechanical properties as well as in actin cytoskeleton dynamics at the wound edge. We propose that OJs are essential for wound closure by impacting on epithelial mechanics at the tissue level, which in turn is crucial for correct regulation of the cellular events occurring at the wound edge.
Mitochondria adapt to cellular needs by changes in morphology through fusion and fission events, referred to as mitochondrial dynamics. Mitochondrial function and morphology are intimately connected and the dysregulation of mitochondrial dynamics is linked to several human diseases. In this work, we investigated the role of mitochondrial dynamics in wound healing in the Drosophila embryonic epidermis. Mutants for mitochondrial fusion and fission proteins fail to close their wounds, indicating that the regulation of mitochondrial dynamics is required for wound healing. By live-imaging, we found that loss of function of the mitochondrial fission protein Dynamin-related protein 1 (Drp1) compromises the increase of cytosolic and mitochondrial calcium upon wounding and leads to F-actin defects at the wound edge, culminating in wound healing impairment. Our results highlight a new role for mitochondrial dynamics in the regulation of calcium and F-actin during epithelial repair.SummaryWe show that mitochondrial dynamics proteins are required for epithelial repair. In particular, Drp1 loss-of-function leads to defects in the dynamics of cytosolic and mitochondrial calcium and F-actin upon wounding.
Tissue repair is critical for the maintenance of epithelial integrity and permeability. Simple epithelial repair relies on a combination of collective cell movements and the action of a contractile actomyosin cable at the wound edge that together promote the fast and efficient closure of tissue discontinuities. The Grainy head family of transcription factors (Grh in flies; GRHL1-GRHL3 in mammals) are essential proteins that have been implicated both in the development and repair of epithelia. However, the genes and the molecular mechanisms that it controls remain poorly understood. Here, we show that Grh knockdown disrupts actomyosin dynamics upon injury of the pupa epithelial tissue. This leads to the formation of an ectopic actomyosin cable away from the wound edge and impaired wound closure. We also uncovered that E-Cadherin is downregulated in the Grh-depleted tissue around the wound, likely as a consequence of Dorsal (an NF-κB protein) misregulation, which also affects actomyosin cable formation. Our work highlights the importance of Grh as a stress response factor and its central role in the maintenance of epithelial characteristics necessary for tissue repair through regulating cytoskeleton and E-Cadherin dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.