Plants developed in calcisol soils have limitations in iron nutrition, so exogenous applications of organic acids plus iron chelate can be an alternative. With the objective of knowing the answer of adding organic acids in the fertilizer solution plus a ferric chelate on the characteristics of the ferric nutrition of tomato plants developed in the calcisol soil the present experiment was established. We conducted the experiment in two stages, in the first stage studied different concentration of some organic acids: citric acid (CA), oxalic acid (OA), salicylic acid (SA), and humic complexes (HCs) combined with a FeEDDHA iron chelate, we included treatment control FeEDTA and FeEDDHA and treatment without iron in the fertilizer solution. In the second stage, we compared the best concentrations of organic acids in combination with FeEDTA iron chelate; we used to treatment control FeEDTA and FeEDDHA, and a control treatment without iron in the fertilizer solution. The best concentrations were CA 10 −4 M, OA 10 −4 M, SA 10 −5 M, and HC 0.4 ml l −1. In the second stage, the addition of CA+FeEDTA and HC+FeEDTA increased SPAD units, chlorophyll and vitamin C contents and fruit quality improved. An increase content of Fe, Zn, and Mn in leaves was presented with treatment CA+FeEDTA and HC+FeEDTA. Addition of CA+FeEDTA improved the oxidation-reduction potential, pH and electrical conductivity (EC) of plant leachates, followed by HC+FeEDTA. Applications of CA and HC in the nutrient solution in combination with EDTA-type chelate improved the characteristics of the ferric nutrition of tomato plants developed in calcisol soil.
Iron (Fe) deficiency is a common abiotic stress on plants growing in calcareous soils where low organic matter content, high carbonate–bicarbonate concentration, and high pH precipitate Fe in unavailable forms. Enzymatic activity is a mechanism for plants to access soil nutrients; enzymes such as H+-ATPase, phosphoenolpyruvate carboxylase (PEPC), and the intracellular enzyme ferric reduction oxidase (FRO) are involved in Fe absorption. The effects of the application of citric acid (CA) and humic-like substances (HLS) on the yield, H+-ATPase, PEPC, and FRO enzyme activity, and expression of LeHA1, LePEPC1, and LeFRO1 genes in tomato plants grown under calcareous soil were studied. CA and HLS improved the SPAD units and increased the number of harvested fruits and yield per plant. Temporary alterations in enzyme activity, which reduced PEPC and FRO activity in roots, were documented. In leaf tissue, CA resulted in lower expression of LeHA1 and LePEPC1 and the induction of LeFRO1 expression, whereas HLS application resulted in higher expression of LePEPC1 and LeFRO1. In roots, LeHA1 expression increased with HLS, whereas LePEPC1 and LeFRO1 showed lower expression with CA and HLS, respectively. The application of CA and HLS through a nutrient solution in combination with Fe-chelate can improve Fe nutrition in tomato plants potted in calcareous soil by inducing temporal alterations in PEPC and FRO enzyme activity and LeFRO1 and LeHA1 gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.