BackgroundObesity is a major health problem. Although heritability is substantial, genetic mechanisms predisposing to obesity are not very well understood. We have performed a genome wide association study (GWA) for early onset (extreme) obesity.Methodology/Principal Findingsa) GWA (Genome-Wide Human SNP Array 5.0 comprising 440,794 single nucleotide polymorphisms) for early onset extreme obesity based on 487 extremely obese young German individuals and 442 healthy lean German controls; b) confirmatory analyses on 644 independent families with at least one obese offspring and both parents. We aimed to identify and subsequently confirm the 15 SNPs (minor allele frequency ≥10%) with the lowest p-values of the GWA by four genetic models: additive, recessive, dominant and allelic. Six single nucleotide polymorphisms (SNPs) in FTO (fat mass and obesity associated gene) within one linkage disequilibrium (LD) block including the GWA SNP rendering the lowest p-value (rs1121980; log-additive model: nominal p = 1.13×10−7, corrected p = 0.0494; odds ratio (OR)CT 1.67, 95% confidence interval (CI) 1.22–2.27; ORTT 2.76, 95% CI 1.88–4.03) belonged to the 15 SNPs showing the strongest evidence for association with obesity. For confirmation we genotyped 11 of these in the 644 independent families (of the six FTO SNPs we chose only two representing the LD bock). For both FTO SNPs the initial association was confirmed (both Bonferroni corrected p<0.01). However, none of the nine non-FTO SNPs revealed significant transmission disequilibrium.Conclusions/SignificanceOur GWA for extreme early onset obesity substantiates that variation in FTO strongly contributes to early onset obesity. This is a further proof of concept for GWA to detect genes relevant for highly complex phenotypes. We concurrently show that nine additional SNPs with initially low p-values in the GWA were not confirmed in our family study, thus suggesting that of the best 15 SNPs in the GWA only the FTO SNPs represent true positive findings.
Genetic contribution to the development of attention deficit hyperactivity disorder (ADHD) is well established. Seven independent genome-wide linkage scans have been performed to map loci that increase the risk for ADHD. Although significant linkage signals were identified in some of the studies, there has been limited replications between the various independent datasets. The current study gathered the results from all seven of the ADHD linkage scans and performed a Genome Scan Meta Analysis (GSMA) to identify the genomic region with most consistent linkage evidence across the studies. Genome-wide significant linkage (P SR =0.00034, P OR =0.04) was identified on chromosome 16 between 64 and 83 Mb. In addition there are nine other genomic regions from the GSMA showing nominal or suggestive evidence of linkage. All these linkage results may be informative and focus the search for novel ADHD susceptibility genes.
Three groups have previously performed genome scans in attention-deficit/hyperactivity disorder (ADHD); linkage to chromosome 5p13 was detected in all of the respective studies. In the current study, we performed a whole-genome scan with 102 German families with two or more offspring who currently fulfilled the diagnostic criteria for ADHD. Including subsequent fine mapping on chromosome 5p, a total of 523 markers were genotyped. The highest nonparametric multipoint LOD score of 2.59 (empirical genome-wide significance 0.1) was obtained for chromosome 5p at 17 cM (according to the Marshfield map). Subsequent analyses revealed (a) a higher LOD score of 3.37 at 39 cM for a quantitative severity score based on symptoms of inattention than for hyperactivity/impulsivity (LOD score of 1.11 at 59 cM), and (b) an HLOD of 4.75 (empirical genome-wide significance 0.001) based on a parametric model assuming dominant inheritance. The locus of the solute carrier 6A3 (SLC6A3; dopamine transporter 1; DAT1) localizes to 5p15.33; the gene has repeatedly been implicated in the etiology of ADHD. However, in our sample the DAT1 VNTR did not show association with ADHD. We additionally identified nominal evidence for linkage to chromosomes 6q, 7p, 9q, 11 q, 12q and 17p, which had also been identified in previous scans. Despite differences in ethnicity, ascertainment and phenotyping schemes, linkage results in ADHD appear remarkably consistent.
Several lines of evidence indicate an involvement of brain derived neurotrophic factor (BDNF) in body weight regulation and activity: heterozygous Bdnf knockout mice (Bdnf(+/-)) are hyperphagic, obese, and hyperactive; furthermore, central infusion of BDNF leads to severe, dose-dependent appetite suppression and weight loss in rats. We searched for the role of BDNF variants in obesity, eating disorders, and attention-deficit/hyperactivity disorder (ADHD). A mutation screen (SSCP and DHPLC) of the translated region of BDNF in 183 extremely obese children and adolescents and 187 underweight students was performed. Additionally, we genotyped two common polymorphisms (rs6265: p.V66M; c.-46C > T) in 118 patients with anorexia nervosa, 80 patients with bulimia nervosa, 88 patients with ADHD, and 96 normal weight controls. Three rare variants (c.5C > T: p.T2I; c.273G > A; c.*137A > G) and the known polymorphism (p.V66M) were identified. A role of the I2 allele in the etiology of obesity cannot be excluded. We found no association between p.V66M or the additionally genotyped variant c.-46C > T and obesity, ADHD or eating disorders. This article contains supplementary material, which may be viewed at the American Journal of Medical Genetics website at http://www.interscience.wiley.com/jpages/0148-7299:1/suppmat/index.html.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.