Adenosine triphosphate (ATP)-binding cassette subfamily A member 3 (ABCA3), a phospholipid transporter in lung lamellar bodies (LBs), is essential for the assembly of pulmonary surfactant and LB biogenesis. Mutations in the ABCA3 gene are an important genetic cause for respiratory distress syndrome in neonates and interstitial lung disease in children and adults, for which there is currently no cure. The aim of this study was to prove that disease causing misfolding ABCA3 mutations can be corrected in vitro and to investigate available options for correction. We stably expressed hemagglutinin (HA)-tagged wild-type ABCA3 or variants p.Q215K, p.M760R, p.A1046E, p.K1388N or p.G1421R in A549 cells and assessed correction by quantitation of ABCA3 processing products, their intracellular localization, resembling LB morphological integrity and analysis of functional transport activity. We showed that all mutant proteins except for M760R ABCA3 were rescued by the bithiazole correctors C13 and C17. These variants were also corrected by the chemical chaperone trimethylamine N-oxide and by low temperature. The identification of lead molecules C13 and C17 is an important step toward pharmacotherapy of ABCA3 misfolding-induced lung disease.
Here we present a set of tools useful for categorizing different ABCA3 mutations according to their impact upon ABCA3 activity. Knowledge of the molecular defects and close correlation of in vitro and ex vivo data will allow us to define groups of mutations that can be targeted by small molecule correctors for restoring impaired ABCA3 transporter in the future. Pediatr Pulmonol. 2016;51:1284-1294. © 2016 Wiley Periodicals, Inc.
ABCA3 is a phospholipid transporter implicated in pulmonary surfactant homoeostasis and localized at the limiting membrane of lamellar bodies, the storage compartment for surfactant in alveolar type II cells. Mutations in ABCA3 display a common genetic cause for diseases caused by surfactant deficiency like respiratory distress in neonates and interstitial lung disease in children and adults, for which currently no causal therapy exists. In this study, we investigated the effects of ivacaftor and genistein, two potentiators of the cystic fibrosis transmembrane conductance regulator (CFTR), on ABCA3‐specific lipid transport function. Wild‐type (WT) and functional ABCA3 mutations N568D, F629L, G667R, T1114M and L1580P were stably expressed in A549 cells. Three‐dimensional modelling predicted functional impairment for all five mutants that was confirmed by in vitro experiments (all <14% of WT functional activity). Treatment with potentiators rescued the mutants N568D (up to 114% of WT), F629L (up to 47% of WT), and G667R (up to 60% of WT), the latter variation needing higher concentrations of genistein, showing reduced affinity of the potentiator to the mutant protein. Our results present a first proof that functional ABCA3 mutations are rescued by CFTR potentiators, making them a potential therapeutical option for patients suffering from surfactant deficiency due to ABCA3 mutations.
Mutations in the ATP-binding cassette subfamily A member 3 (ABCA3) gene are the most common monogenetic cause of surfactant dysfunction disorders in newborns and interstitial lung diseases in children and young adults. Although the effect of mutations resulting in truncated or incomplete proteins can be predicted, the consequences of missense variants cannot be as easily. Our aim was to investigate the intracellular handling and disturbance of the cellular surfactant system in a stable cell model with several different clinically relevant ABCA3 missense mutations. We found that the investigated missense mutations within the ABCA3 gene affect surfactant homeostasis in different ways: first by disrupting intracellular ABCA3 protein localization (c.643C > A, p.Q215K; c.2279T > G, p.M760R), second by impairing the lipid transport of ABCA3 protein (c.875A > T, p.E292V; c.4164G > C, p.K1388N), and third by yet undetermined mechanisms predisposing for the development of interstitial lung diseases despite correct localization and normal lipid transport of the variant ABCA3 protein (c.622C > T, p.R208W; c.863G > A, p.R288K; c.2891G > A, p.G964D). In conclusion, we classified cellular consequences of missense ABCA3 sequence variations leading to pulmonary disease of variable severity. The corresponding molecular pathomechanisms of such ABCA3 variants may specifically be addressed by targeted treatments.
The ABCA3 lipid transporter is located in the limiting membrane of lamellar bodies (LBs) in type-II-pneumocytes. Mutations within the ABCA3 gene may functionally impair the transporter, causing lung diseases in newborns, children and adults. Assays to quantify volume and lipid filling of the LBs on the level of the vesicular structures and thereby assess the function of ABCA3 are still lacking. In the present study human influenza haemagglutinin- (HA-) tagged wild type and mutant ABCA3 proteins were stably expressed in lung A549 cells. Fluorescently-labelled TopFluor phosphatidylcholine (TopF-PC) incorporated in surfactant-like liposomes was delivered to the cells and visualized by confocal microscopy. Subsequently, a comprehensive image analysis method was applied to quantify volume and fluorescence intensity of TopF-PC in ABCA3-HA-positive vesicles. TopF-PC accumulated within the vesicles in a time and concentration-dependent manner, whereas the volume remained unchanged, suggesting active transport into preformed ABCA3 containing vesicles. Furthermore, this finding was supported by a decrease of the fluorescence intensity within the vesicles when either the ATPase of the transporter was inhibited by vanadate, or when a disease-causing mutation (K1388N) close to the ABCA3-nucleotide binding domain 2 was introduced. Conversely, a mutation (E292V) located in the first cytoplasmic loop of ABCA3 did not significantly affect lipid transport, but rather resulted in smaller vesicles. In addition to these findings, the assay used in this work for analysing the PC-lipid transport into ABCA3 positive vesicles will be useful to screen for compounds susceptible to restore function in mutated ABCA3 protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.