Adenosine triphosphate (ATP)-binding cassette subfamily A member 3 (ABCA3), a phospholipid transporter in lung lamellar bodies (LBs), is essential for the assembly of pulmonary surfactant and LB biogenesis. Mutations in the ABCA3 gene are an important genetic cause for respiratory distress syndrome in neonates and interstitial lung disease in children and adults, for which there is currently no cure. The aim of this study was to prove that disease causing misfolding ABCA3 mutations can be corrected in vitro and to investigate available options for correction. We stably expressed hemagglutinin (HA)-tagged wild-type ABCA3 or variants p.Q215K, p.M760R, p.A1046E, p.K1388N or p.G1421R in A549 cells and assessed correction by quantitation of ABCA3 processing products, their intracellular localization, resembling LB morphological integrity and analysis of functional transport activity. We showed that all mutant proteins except for M760R ABCA3 were rescued by the bithiazole correctors C13 and C17. These variants were also corrected by the chemical chaperone trimethylamine N-oxide and by low temperature. The identification of lead molecules C13 and C17 is an important step toward pharmacotherapy of ABCA3 misfolding-induced lung disease.
Mutations in the ATP-binding cassette subfamily A member 3 (ABCA3) gene are the most common monogenetic cause of surfactant dysfunction disorders in newborns and interstitial lung diseases in children and young adults. Although the effect of mutations resulting in truncated or incomplete proteins can be predicted, the consequences of missense variants cannot be as easily. Our aim was to investigate the intracellular handling and disturbance of the cellular surfactant system in a stable cell model with several different clinically relevant ABCA3 missense mutations. We found that the investigated missense mutations within the ABCA3 gene affect surfactant homeostasis in different ways: first by disrupting intracellular ABCA3 protein localization (c.643C > A, p.Q215K; c.2279T > G, p.M760R), second by impairing the lipid transport of ABCA3 protein (c.875A > T, p.E292V; c.4164G > C, p.K1388N), and third by yet undetermined mechanisms predisposing for the development of interstitial lung diseases despite correct localization and normal lipid transport of the variant ABCA3 protein (c.622C > T, p.R208W; c.863G > A, p.R288K; c.2891G > A, p.G964D). In conclusion, we classified cellular consequences of missense ABCA3 sequence variations leading to pulmonary disease of variable severity. The corresponding molecular pathomechanisms of such ABCA3 variants may specifically be addressed by targeted treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.