We analyse star formation in the nuclei of 9 Seyfert galaxies at spatial resolutions down to 0.085arcsec, corresponding to length scales of less than 10pc in some objects. Our data were taken mostly with the near infrared adaptive optics integral field spectrograph SINFONI. The stellar light profiles typically have size scales of a few tens of parsecs. In two cases there is unambiguous kinematic evidence for stellar disks on these scales. In the nuclear regions there appear to have been recent - but no longer active - starbursts in the last 10-300Myr. The stellar luminosity is less than a few percent of the AGN in the central 10pc, whereas on kiloparsec scales the luminosities are comparable. The surface stellar luminosity density follows a similar trend in all the objects, increasing steadily at smaller radii up to 10^{13}L_sun/kpc^2 in the central few parsecs, where the mass surface density exceeds 10^4M_sun/pc^2. The intense starbursts were probably Eddington limited and hence inevitably short-lived, implying that the starbursts occur in multiple short bursts. The data hint at a delay of 50--100Myr between the onset of star formation and subsequent fuelling of the black hole. We discuss whether this may be a consequence of the role that stellar ejecta could play in fuelling the black hole. While a significant mass is ejected by OB winds and supernovae, their high velocity means that very little of it can be accreted. On the other hand winds from AGB stars ultimately dominate the total mass loss, and they can also be accreted very efficiently because of their slow speeds.Comment: 51 pages, including 27 figures; accepted by ApJ (paper reorganised, but results & conclusions the same
Abstract. We present polarisation measurements of sdB and sdO stars using FORS1 on the VLT. The observations were made as part of a project to determine whether magnetic fields in two super-metal-rich stars can explain their extreme abundance peculiarities. Field strengths of up to ∼1.5 kG range have been measured at varying levels of significance in each of our six targets, however no clear evidence was found between apparently normal subdwarfs and the metal-rich objects. The origin of the magnetic fields is unknown. We also discuss the implications of our measurements for magnetic flux conservation in late stages of stellar evolution.
Abstract. The magnetic Cataclysmic Variable (mCV) V1432 Aql (RX J1940.1-1025) belongs to the four-member subclass of near-synchronous polars with a slight non-synchronism (<2%) between the spin period of the white dwarf and the binary period. In these systems the accretion geometry changes periodically with phase of the beat cycle. We present the application of a dipole accretion model for near-synchronous systems developed by Geckeler & Staubert (1997a) to extended optical and X-ray data. We detect a significant secular change of the white dwarf spin period in V1432 Aql of dP spin /dt = −5.4−9 s/s from the optical data set alone. This corresponds to a synchronization time scale τ sync = 199 +441 −75 yr, comparable to the time scale of 170 yr for V1500 Cyg. The synchronization time scale in V1432 Aql is in excellent agreement with the theoretical prediction from the dominating magnetic torque in near-synchronous systems. We also present period analyses of optical CCD photometry and RXTE X-ray data, which argue against the existence of a 4000 s period and an interpretation of V1432 Aql as an intermediate polar. The dipole accretion model also allows us to constrain the relevant parameters of the accretion geometry in this system: the optical data allow an estimate of the dimensionless parameter (R t0 /R wd ) 1/2 sin β = 3.6 +2.7 −1.1 , with a lower limit for the threading radius of R t0 > 10 R wd (68% confidence).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.