Members of the Bcl-2 family are major regulators of cell death and survival. Bcl-2 has been shown to heterodimerize with the death-inducing protein Bax, but the mechanism of action of Bcl-2 is not fully understood. Here we show, using the human NT-2 neuronal cell line, that overexpression of Bcl-2 leads to dramatic down-regulation of the cysteine proteases ICH and CPP32/Yama, which are directly involved in cell death. In addition, the nuclear enzyme poly(ADP-ribose) polymerase was cleaved in control cells but not in cells overexpressing Bcl-2 following induction of apoptosis. The mRNA levels of ICH and CPP32/Yama were differentially affected by Bcl-2 overexpression, suggesting both transcriptional and post-transcriptional effects of the protein. These results demonstrate novel mechanisms of action of Bcl-2 in influencing the expression of death effectors such as the cysteine proteases. The relative levels of Bcl-2 and of various cysteine proteases ultimately determine survival and death of different cells, including neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.