We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (p<2.2×10−7): of these, 16 map outside known risk loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent “false leads” with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets: however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.
Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40–50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10–20% (14–24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.
The BSI-18, an abridged version of the Brief Symptom Inventory of Derogatis, contains the 3 six items scales Somatization, Depression, Anxiety, and the Global Score (GSI). In a sample of N=638 psychotherapeutic patients, reliability and validity were proven. Reliability of the 3 scales was good: Somatization α=0.79, Depression α=0.84, Anxiety α=0.84, and GSI α=0.91. The postulated three-factor structure was proven sufficiently using confirmatory and explorative factor analyses. The questionnaire separated different patients groups. Judgments of the therapists corresponded well with the self-rating behavior of the patients. In conclusion, the psychometric evaluation of the BSI-18 resulted in persuasive evidence for its reliability and validity. The loss of information, as a result of item reduction, is acceptable analyzing large samples; in cases of individual analyses, the SCL-90-R is advised.
Aims/hypothesisWe aimed to examine the association between breast-feeding and maternal risk of type 2 diabetes and to investigate whether this association is mediated by anthropometric and biochemical factors.MethodsA case–cohort study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study between 1994 and 2005 including 1,262 childbearing women (1,059 in a random sub-cohort and 203 incident cases) mainly aged between 35 and 64 years at baseline was applied. Self-reported lifetime duration of breast-feeding was assessed by questionnaire. Blood samples were used for biomarker measurement (HDL-cholesterol, triacylglycerols, C-reactive protein, fetuin-A, γ-glutamyltransferase, adiponectin). A systematic literature search and meta-analysis was conducted of prospective cohort studies investigating breast-feeding and risk of type 2 diabetes.ResultsThe HR for each additional 6 months of breast-feeding was 0.73 (95% CI 0.56, 0.94) in EPIC-Potsdam. Meta-analysis of three previous prospective studies and the current study revealed an inverse association between breast-feeding duration and risk of diabetes (pooled HR for lifetime breast-feeding duration of 6–11 months compared with no breast-feeding 0.89; 95% CI 0.82, 0.97). Adjustment for BMI and waist circumference attenuated the association (HR per six additional months in EPIC-Potsdam 0.80; 95% CI 0.61, 1.04). Further controlling for potentially mediating biomarkers largely explained this association (HR 0.89; 95% CI 0.68, 1.16).Conclusions/interpretationLonger duration of breast-feeding may be related to a lower risk of diabetes. This potentially protective effect seems to be reflected by a more favourable metabolic profile; however, the role of body weight as a mediator or confounder remains uncertain.Electronic supplementary materialThe online version of this article (doi:10.1007/s00125-014-3247-3) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
The fatty liver index (FLI) predicts fatty liver by using BMI, waist circumference, γ-glutamyltransferase and triglycerides. We investigated the association between the FLI and the risk of type 2 diabetes and evaluated to what extent single FLI components contribute to the diabetes risk. We analysed a case-cohort study (random sub-cohort: 1922; incident cases: 563) nested within the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study. The proportion of exposure effect (PEE) explained by single FLI components was evaluated and effect decomposition using inverse probability weighting (IPW) was applied. Women and men with a FLI ≥60 compared to those with a FLI <30 had a multivariable-adjusted Hazard Ratio (HR) of 17.6; 95% confidence interval (CI) 11.1-28.0 and HR: 10.9; 95% CI 6.22-19.2, respectively. Adjustment for BMI or waist circumference attenuated this association in men [PEEBMI (95% CI) = 53.8% (43.9%-65.8%); PEEwaist (95% CI) = 54.8% (44.2%-68.8%)]. In women, adjustment for waist circumference attenuated the association to a lesser degree than in men [PEEwaist (95% CI) = 31.1%; (21.9%-43.1%)] while BMI had no appreciable effect [PEEBMI (95% CI) = 11.0% (2.68%-21.0%)]. γ-glutamyltransferase and triglycerides showed only a small attenuation in women [PEEGGT(95% CI) = 3.11% (-0.72%-4.48%); PEETG (95% CI) = 6.36% (3.81%-9.92%)] and in men [PEEGGT = 0%; PEETG (95% CI) = 6.23% (2.03%-11.8%)]. In women, the total effect was decomposed into a direct effect and 4 indirect effects (HRBMI = 1.10; HRwaist = 1.28; HRGGT = 0.97 and HRTG = 1.03). In men, the 4 indirect effects were HRBMI = 1.25; HRwaist = 1.29; HRGGT = 0.97 and HRTG = 0.99. These data suggest that the FLI, as a proxy for fatty liver, is associated with risk of type 2 diabetes. This association is only partly explained by standard estimates of overall and abdominal body fatness, particularly among women.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.