We have sequenced the genome of the endangered European eel using the MinION by Oxford Nanopore, and assembled these data using a novel algorithm specifically designed for large eukaryotic genomes. For this 860 Mbp genome, the entire computational process takes two days on a single CPU. The resulting genome assembly significantly improves on a previous draft based on short reads only, both in terms of contiguity (N50 1.2 Mbp) and structural quality. This combination of affordable nanopore sequencing and light weight assembly promises to make high-quality genomic resources accessible for many non-model plants and animals.
dThe translational value of zebrafish high-throughput screens can be improved when more knowledge is available on uptake characteristics of potential drugs. We investigated reference antibiotics and 15 preclinical compounds in a translational zebrafish-rodent screening system for tuberculosis. As a major advance, we have developed a new tool for testing drug uptake in the zebrafish model. This is important, because despite the many applications of assessing drug efficacy in zebrafish research, the current methods for measuring uptake using mass spectrometry do not take into account the possible adherence of drugs to the larval surface. Our approach combines nanoliter sampling from the yolk using a microneedle, followed by mass spectrometric analysis. To date, no single physicochemical property has been identified to accurately predict compound uptake; our method offers a great possibility to monitor how any novel compound behaves within the system. We have correlated the uptake data with high-throughput drug-screening data from Mycobacterium marinum-infected zebrafish larvae. As a result, we present an improved zebrafish larva drug-screening platform which offers new insights into drug efficacy and identifies potential false negatives and drugs that are effective in zebrafish and rodents. We demonstrate that this improved zebrafish drug-screening platform can complement conventional models of in vivo Mycobacterium tuberculosis-infected rodent assays. The detailed comparison of two vertebrate systems, fish and rodent, may give more predictive value for efficacy of drugs in humans.
Type 2 diabetes, obesity, and metabolic syndrome are pathologies where insulin resistance plays a central role, and that affect a large population worldwide. These pathologies are usually associated with a dysregulation of insulin secretion leading to a chronic exposure of the tissues to high insulin levels (i.e. hyperinsulinemia), which diminishes the concentration of key downstream elements, causing insulin resistance. The complexity of the study of insulin resistance arises from the heterogeneity of the metabolic states where it is observed. To contribute to the understanding of the mechanisms triggering insulin resistance, we have developed a zebrafish model to study insulin metabolism and its associated disorders. Zebrafish larvae appeared to be sensitive to human recombinant insulin, becoming insulin-resistant when exposed to a high dose of the hormone. Moreover RNA-seq-based transcriptomic profiling of these larvae revealed a strong downregulation of a number of immune-relevant genes as a consequence of the exposure to hyperinsulinemia. Interestingly, as an exception, the negative immune modulator protein tyrosine phosphatase nonreceptor type 6 (ptpn6) appeared to be upregulated in insulin-resistant larvae. Knockdown of ptpn6 was found to counteract the observed downregulation of the immune system and insulin signaling pathway caused by hyperinsulinemia. These results indicate that ptpn6 is a mediator of the metabolic switch between insulin-sensitive and insulin-resistant states. Our zebrafish model for hyperinsulinemia has therefore demonstrated its suitability for discovery of novel regulators of insulin resistance. In addition, our data will be very useful in further studies of the function of immunological determinants in a non-obese model system.
Background: Monogenean flatworms are the main fish ectoparasites inflicting serious economic losses in aquaculture. The polyopisthocotylean Sparicotyle chrysophrii parasitizes the gills of gilthead sea bream (GSB, Sparus aurata) causing anaemia, lamellae fusion and sloughing of epithelial cells, with the consequent hypoxia, emaciation, lethargy and mortality. Currently no preventive or curative measures against this disease exist and therefore information on the hostparasite interaction is crucial to find mitigation solutions for sparicotylosis. The knowledge about gene regulation in monogenean-host models mostly comes from freshwater monopysthocotyleans and almost nothing is known about polyopisthocotyleans. The current study aims to decipher the host response at local (gills) and systemic (spleen, liver) levels in farmed GSB with a mild natural S. chrysophrii infection by transcriptomic analysis. Results: Using Illumina RNA sequencing and transcriptomic analysis, a total of 2581 differentially expressed transcripts were identified in infected fish when compared to uninfected controls. Gill tissues in contact with the parasite (P gills) displayed regulation of fewer genes (700) than gill portions not in contact with the parasite (NP gills) (1235), most likely due to a local silencing effect of the parasite. The systemic reaction in the spleen was much higher than that at the parasite attachment site (local) (1240), and higher than in liver (334). NP gills displayed a strong enrichment of genes mainly related to immune response and apoptosis. Processes such as apoptosis, inflammation and cell proliferation dominated gills, whereas inhibition of apoptosis, autophagy, platelet activation, signalling and aggregation, and inflammasome were observed in spleen. Proteasome markers were increased in all tissues, whereas hypoxia-related genes were down-regulated in gills and spleen. Conclusions: Contrasting forces seem to be acting at local and systemic levels. The splenic down-regulation could be part of a hypometabolic response, to counteract the hypoxia induced by the parasite damage to the gills and to concentrate the energy on defence and repair responses. Alternatively, it can be also interpreted as the often observed action of helminths to modify host immunity in its own interest. These results provide the first toolkit for future studies towards understanding and management of this parasitosis.
Cardiomyopathies-associated metabolic pathologies (e.g., type 2 diabetes and insulin resistance) are a leading cause of mortality. It is known that the association between these pathologies works in both directions, for which heart failure can lead to metabolic derangements such as insulin resistance. This intricate crosstalk exemplifies the importance of a fine coordination between one of the most energy-demanding organs and an equilibrated carbohydrate metabolism. In this light, to assist in the understanding of the role of insulinregulated glucose transporters (GLUTs) and the development of cardiomyopathies, we have developed a model for glut12 deficiency in zebrafish. GLUT12 is a novel insulin-regulated GLUT expressed in the main insulin-sensitive tissues, such as cardiac muscle, skeletal muscle, and adipose tissue. In this study, we show that glut12 knockdown impacts the development of the embryonic heart resulting in abnormal valve formation. Moreover, glut12-deficient embryos also exhibited poor glycemic control. Glucose measurements showed that these larvae were hyperglycemic and resistant to insulin administration. Transcriptome analysis demonstrated that a number of genes known to be important in cardiac development and function as well as metabolic mediators were dysregulated in these larvae. These results indicate that glut12 is an essential GLUT in the heart where the reduction in glucose uptake due to glut12 deficiency leads to heart failure presumably due to the lack of glucose as energy substrate. In addition, the diabetic phenotype displayed by these larvae after glut12 abrogation highlights the importance of this GLUT during early developmental stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.