Thiyl radicals are intermediates of enzyme- and radical-driven biochemical processes, and their potential as reactive species in the biological environment has been somehow underestimated. From organic chemistry, however, it is known that thiyl radicals isomerize the double bonds of unsaturated fatty acids to a mixture with very dominating trans isomers. Recently, this reaction has been particularly studied for biosystems, focusing on the effect of thiyl radicals on the natural all-cis double bonds of unsaturated phospholipids, which undergo a conversion to the unnatural trans form. In this paper we report briefly the role of thiyl radicals in biosystems, describe the main features of the radical-induced cis-trans isomerization process under both in vitro and in vivo conditions, and reflect on some consequences for membrane structures, lipid metabolism and enzymatic reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.