Myeloid-derived suppressor cells (MDSC) are contributing to an immunosuppressive environment by their ability to inhibit T cell activity and thereby promoting cancer progression. An important feature of the incurable plasma cell malignancy Multiple Myeloma (MM) is immune dysfunction. MDSC were previously identified to be present and active in MM patients, however little is known about the MDSC-inducing and -activating capacity of MM cells. In this study we investigated the effects of the tumor microenvironment on MDSC survival. During MM progression in the 5TMM mouse model, accumulation of MDSC in the bone marrow was observed in early stages of disease development, while circulating myeloid cells were increased at later stages of disease. Interestingly, in vivo MDSC targeting by anti-GR1 antibodies and 5-Fluorouracil resulted in a significant reduced tumor load in 5TMM-diseased mice. In vitro generation of MDSC was demonstrated by increased T cell immunosuppressive capacity and MDSC survival was observed in the presence of MM-conditioned medium. Finally, increased Mcl-1 expression was identified as underlying mechanism for MDSC survival. In conclusion, our data demonstrate that soluble factors from MM cells are able to generate MDSC through Mcl-1 upregulation and this cell population can be considered as a possible target in MM disease.
Multiple myeloma (MM) is a hematological malignancy characterized by the accumulation of plasma cells in the bone marrow (BM). The success of the proteasome inhibitor bortezomib in the treatment of MM highlights the importance of the ubiquitin proteasome system (UPS) in this particular cancer. Despite the prolonged survival of MM patients, a significant amount of patients relapse or become resistant to therapy. This underlines the importance of the development and investigation of novel targets to improve MM therapy. The UPS plays an important role in different cellular processes by targeted destruction of proteins. The ubiquitination process consists of enzymes that transfer ubiquitin to proteins targeting them for proteasomal degradation. An emerging and promising approach is to target more disease specific components of the UPS to reduce side effects and overcome resistance. In this review, we will focus on different components of the UPS such as the ubiquitin activating enzyme E1, the ubiquitin conjugating enzyme E2, the E3 ubiquitin ligases, the deubiquitinating enzymes (DUBs) and the proteasome. We will discuss their role in MM and the implications in drug discovery for the treatment of MM.
The anaphase promoting complex/cyclosome (APC/C) is an ubiquitin ligase involved in cell cycle. During the metaphase-anaphase transition the APC/C is activated by Cdc20. The aim of this study is to elucidate the importance and therapeutic potential of APC/C and its co-activator Cdc20 in multiple myeloma (MM). Gene expression analysis revealed that Cdc20 was expressed at higher levels in gene expression-based high-risk MM patients. Moreover, high Cdc20 expression correlated with poor prognosis. Treatment of human myeloma cell lines with proTAME, an APC/C inhibitor, resulted in an accumulation of APC/CCdc20 substrate cyclin B1 and an accumulation of cells in metaphase. Moreover we observed a significant dose-dependent decrease in viability and increase in apoptosis in MM cells upon proTAME treatment. The induction of apoptosis was accompanied with caspase 3, 8, 9 and PARP cleavage. A similar metaphase arrest and induction of apoptosis were obtained with specific knockdown of Cdc20. In addition, we demonstrated the accumulation of Bim was partially responsible for the observed cell death. Combining proTAME with another APC/C inhibitor apcin or the alkylating agent melphalan resulted in enhanced anti-MM activity. This study suggests that the APC/C and its co-activator Cdc20 could be a new and promising target especially in high-risk MM patients.
Despite the introduction of new treatment options for multiple myeloma (MM), a majority of patients relapse due to the development of resistance. Unraveling new mechanisms underlying resistance could lead to identification of possible targets for combinatorial treatment. Using TRAF3 deleted/mutated MM cell lines, we evaluated the role of the cellular inhibitor of apoptosis 2 (cIAP2) in drug resistance and uncovered the plausible mechanisms underlying this resistance and possible strategies to overcome this by combinatorial treatment. In MM, cIAP2 is part of the gene signature of aberrant NF-κB signaling and is heterogeneously expressed amongst MM patients. In cIAP2 overexpressing cells a decreased sensitivity to the proteasome inhibitors bortezomib, MG132 and carfilzomib was observed. Gene expression analysis revealed that 440 genes were differentially expressed due to cIAP2 overexpression. Importantly, the data imply that cIAPs are rational targets for combinatorial treatment in the population of MM with deleted/mutated TRAF3. Indeed, we found that treatment with the IAP inhibitor AT-406 enhanced the anti-MM effect of bortezomib in the investigated cell lines. Taken together, our results show that cIAP2 is an important factor mediating bortezomib resistance in MM cells harboring TRAF3 deletion/mutation and therefore should be considered as a target for combinatorial treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.