The human spermatozoa membrane is characterized by a unique fatty acyl composition with significant amounts of highly unsaturated fatty acids, particularly docosahexaenoic acid (22:6), whereby phosphatidylcholine (PtdCho) (16:0/22:6) is the most abundant glycerophospholipid. The large amount of highly unsaturated fatty acyl residues is crucial for the fluidity of the membrane and, therefore, the successful fertilization process. Consequently, however, the spermatozoa are very sensitive to reactive oxygen species (ROS) that are generated under conditions of "oxidative stress" and key players in many pathological conditions. Lipid oxidation of the sperm membrane is accompanied by the loss of the oxidatively modified unsaturated residue (normally in the sn-2 position) and the generation of saturated lysophosphatidylcholine (LysoPtdCho). Although other lysolipids are also generated, LysoPtdCho is the "marker" lipid of choice due to the high abundance of PtdCho. In particular, obesity (body mass index >30 kg/m(2)) is characterized by increased ROS generation and negatively affects the reproductive potential. We will show here that the LysoPtdCho/PtdCho ratio can be easily determined by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). The data found do correlate with clinical markers of sperm quality. A very interesting aspect is that the LysoPtdCho/PtdCho ratios determined in the spermatozoa extracts correlate with the LysoPtdCho/PtdCho values determined in the organic extracts of erythrocytes. Thus, there is no absolute need for a sperm investigation, but an estimation of the fertilizing ability of the corresponding male could be also made directly from the blood which is more readily available than the spermatozoa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.