Intended near-total removal results in excellent preservation of facial nerve function and has a low recurrence rate. Any progressive residual tumor may be treated by radiosurgery.
Electronic documentation of medication data is one of the biggest challenges associated with digital clinical documentation. Despite its importance, it has not been consistently implemented in German university hospitals. In this paper we describe the approach of the German Medical Informatics Initiative (MII) towards the modelling of a medication core dataset using FHIR® profiles and standard-compliant terminologies. The FHIR profiles for Medication and MedicationStatement were adapted to the core dataset of the MIl. The terminologies to be used were selected based on the criteria of the ISO-standard for the Identification of Medicinal Products (IDMP). For a first use case with a minimal medication dataset, the entries in the medication chapter of the German Procedure Classification (OPS codes) were analyzed and mapped to IDMP-compliant medication terminology. OPS data are available at all German hospitals as they are mandatory for reimbursement purposes. Reimbursement-relevant encounter data containing OPS medication procedures were used to create a FHIR representation based on the FHIR profiles MedicationStatement and Medication. This minimal solution includes – besides the details on patient and start-/end-dates – the active ingredients identified by the IDMP-compliant codes and – if specified in the OPS code – the route of administration and the range of the amount of substance administered to the patient, using the appropriate unit of measurement code. With FHIR, the medication data can be represented in the data integration centers of the MII to provide a standardized format for data analysis across the MII sites.
A significant portion of data in Electronic Health Records is only available as unstructured text, such as surgical or finding reports, clinical notes and discharge summaries. To use this data for secondary purposes, natural language processing (NLP) tools are required to extract structured information. Furthermore, for interoperable use, harmonization of the data is necessary. HL7 Fast Healthcare Interoperability Resources (FHIR), an emerging standard for exchanging healthcare data, defines such a structured format. For German-language medical NLP, the tool Averbis Health Discovery (AHD) represents a comprehensive solution. AHD offers a proprietary REST interface for text analysis pipelines. To build a bridge between FHIR and this interface, we created a service that translates the communication around AHD from and to FHIR. The application is available under an open source license.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.