Pyrazolines are well known and important nitrogen containing 5-membered heterocyclic compounds and various methods have been worked out for their synthesis. Numerous pyrazoline derivatives have been found to possess considerable biological activities, which stimulated the research activity in this field. They have several prominent effects, such as antimicrobial, antimycobacterial, antifungal, antiamoebic, anti-inflammatory, analgesic, antidepressant and anticancer activities. They also possess some potent receptor selective biological activity like Nitric oxide synthase (NOS) inhibitor and Cannabinoid CB1 receptor antagonists activity. 4,5-dihydro-1H- pyrazolines seem to be the most frequently studied pyrazoline type compounds. As a result, a large number of such pyrazolines using different synthetic methods for their preparation have been described in the chemistry literature. The present review provides an insight view to pyrazolines synthesis and its biological activities along with the compilation of recent patents on pyrazolines.
SummarySeveral five membered ring systems, e.g., triazole, oxadiazole dithiazole and thiadiazole with three heteroatoms at symmetrical or asymmetrical positions have been studied because of their interesting pharmacological properties. In this article our emphasis is on synthetic development and pharmacological activity of the triazole moiety which exhibit a broad spectrum of pharmacological activity such as antifungal, antibacterial, anti-inflammatory and anticancer etc. Triazoles have increased our ability to treat many fungal infections, for example, candidiasis, cryptococcal meningitis, aspergillosis etc. However, mortality due to these infections even with antifungal therapy is still unacceptably high. Therefore, the development of new antifungal agents targeting specific fungal structures or functions is being actively pursued. Rapid developments in molecular mycology have led to a concentrated search for more target antifungals. Although we are entering a new era of antifungal therapy in which we will continue to be challenged by systemic fungal diseases, the options for treatment will have greatly expanded.
Antimalarial drugs constitute a major part of antiprotozoal drugs and have been in practice for a long time. Antimalarial agents generally belong to the class of quinoline which acts by interfering with heme metabolism. The recent increase in development of chloroquine-resistant strains of Plasmodium falciparum and failure of vaccination program against malaria have fuelled the drug discovery program against this old and widespread disease. Quinoline and its related derivative comprise a class of heterocycles, which has been exploited immensely than any other nucleus for the development of potent antimalarial agents. Various chemical modifications of quinoline have been attempted to achieve analogs with potent antimalarial properties against sensitive as well as resistant strains of Plasmodium sp., together with minimal potential undesirable side effects. This review outlines essentially some of the recent chemical modifications undertaken for the development of potent antimalarial agents based on quinoline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.