Mattan-Moorgawa S, Rughooputh SDDV, Bhagooli R. 2017. Variable PSII functioning and bleaching conditions of tropical scleractinian corals pre-and post-bleaching event. Ocean Life 1: 1-10. This study compared pre-bleaching and post-bleaching conditions of eight reef-building corals, Acropora cytherea, Acropora hyacynthus, Acropora muricata, Acropora sp., Pocillopora damicornis, Pocillopora eydouxi, Galaxea fascicularis and Fungia sp., in terms of visual coloration (non-bleached (NB), pale (P), partially bleached (PB) and bleached (B)) and chlorophyll fluorescence yield at photosystem II (PSII)). A total of twenty colonies from twelve stations along four transects were surveyed at Belle-Mare, Mauritius, from October 2008 to October 2009, and compared to the CoralWatch Coral Health Chart. PSII functioning, measured as Fv/Fm, were recorded in coral samples using a pulse-amplitudemodulated (PAM) fluorometer. Physico-chemical parameters (sea surface temperature, dissolved oxygen, salinity and pH) were recorded in situ. An increase in SST up to 31.4ºC in February 2009 triggered the bleaching event observed in May 2009 at the site. Acroporids showed the first sign of bleaching and paling as from January 2009 when mean SST was at 30ºC. Branching coral (P. eydouxi) and solitary coral (Fungia sp.) exhibited only 15% of their colonies showing paling by April 2009. A. cytherea, A. hyacynthus, and A. muricata showed varying bleaching conditions [Pale (P), Partially-bleached (PB) and Bleached (B)] at onset of the bleaching event whilst Acropora sp. showed only a paling of its colonies. Post-bleaching data indicated a differential recovery in visual coloration and PSII functioning among the corals. P. eydouxi and Fungia sp. showed no bleaching conditions throughout the study. P. damicornis and G. fascicularis indicated a quick coloration recovery from P to NB after the bleaching event, although their maximum quantum yield at PSII did not show significant changes in P and NB samples. A. muricata recovered faster than A. hyacynthus and A. cytherea in terms of PSII functioning. A differential recovery was observed post-bleaching event among the eight coral species, in terms of recovery of color and PSII functioning. The order of recovery was as follows: massive-like/ solitary corals > branching and semi-bulbous corals > tabular corals.
Marine algae are of high importance in their natural habitats and even more now in the world of green technology. The sprouting interest of the scientific community and industries in these organisms is driven by the fast-growing world of modern biotechnology. Genomics, transcriptomics, proteomics, metabolomics and their integration collectively termed here as 'marine algal-omics' have broadened the research horizon in view of enhancing human's life by addressing environmental problems and encouraging novelty in the field of pharmaceuticals among so many more. Their use in the human society dates back to 500 B. C. in China and later across the globe; they are still being used for similar purposes and more today. There is a hiking interest in marine algae and their derivatives-from phycoremediation, food supplements, pharmaceuticals to dyes. Marine algae are currently considered as an emerging panacea for the society. They are being studied in a multitude of arenas. The multi-use of marine algae is enticing and promises to be a boon for industrial applications. Yet, most marine algae face challenges that might variably constrain their commercialisation. This chapter gives an overview of marine algae including all the 'omics' technologies involved in studying marine algae and it explores their multitude applications. It also draws the various successful industries budded around them and presents some of the challenges and opportunities along with future directions.
Coral cell aggregates (tissue balls) from four species (Acropora muricata, Fungia repanda, Pavona cactus andPocillopora damicornis) were used as an indicator to investigate the effects on the corals of thermal stress and of chemical extracts from three sponges (Adocia sp., Haliclona sp. and Lissodendoryx sp.) and one ascidian (Didemnum molle). The formation and disintegration of tissue balls were studied through exposure to a temperature range of 23-30 °C at time intervals of 0-90 min, and to sponge and ascidian crude extracts at concentrations of 50-200 μg ml -1 at temperatures of 23 and 30 °C and at time intervals of 10, 60 and 120 min. The negative effect of temperature on overall tissue ball density (number per cm 2 of coral surface) was greatest at higher temperatures (28 and 30 °C) but varied among coral species. Tissue balls of P. damicornis were the most robust whereas those of A. muricata were the most sensitive. High concentrations of extracts of Adocia sp., Haliclona sp. and Lissodendoryx sp. generally inhibited the formation of tissue balls or caused their disintegration, or both, most markedly at 30 °C. Adocia sp. induced the least negative effects and Haliclona sp. the most. No tissue balls were formed in the presence of D. molle extracts (50 and 100 μg ml -1 ), indicating a high level of interference with tissue ball formation. The differential susceptibility to thermal and chemical stressors exhibited by the corals under study have possible implications for the interactions of the corals with other sedentary reef organisms under climate change-driven ocean warming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.