The present study deals with static modeling and analysis of a novel electro-pneumatic braided muscle (EPBM) actuator. The EPBM actuator is a hybrid McKibben-type actuator, made of a dielectric polymeric bladder enclosed in a braided mesh sleeve. A continuum mechanics-based electromechanical model is developed to predict the response of the actuator for a combined pressure and voltage loading. The model also incorporates braid-to-braid frictional effects. The model agrees well with existing experimental results for the special case of zero input voltage. Parametric studies are subsequently performed for varying braid angle, input pressure, and voltage. Finally, the model is utilized to study the impact of fiber-reinforcement in the bladder on the actuator performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.