The present paper is concerned with the development of a simple dry eye model in the rabbit, induced by daily repeated instillations of 1.0% atropine sulphate. The evolution of the dry eye syndrome in the animals was assessed by the Schirmer I test and by examination of the cornea after fluorescein staining. The model produced rapidly some typical dry eye symptoms and could be satisfactorily used for a preliminary assessment of the protective activity of some polymeric tear substitutes. These were based on hydroxypropylmethylcellulose, sodium hyaluronate, sodium polyacrylate or tamarind gum. The latter polymer showed the best overall results. Ferning tests on the formulations were also performed: their validity as predictors of the efficacy of tear substitutes is discussed.
Eye drops are widely accepted as formulations for targeting the anterior segment notwithstanding their limitations in terms of bioavailability. The unique structure of the eye requires specially-designed formulations able to favor the pharmacokinetic profile of administered drugs, mainly minimizing the influence of ocular barriers. Nanotechnology-based delivery systems lead to significant technological and therapeutical advantages in ophthalmic therapy. The aim of the present study was to determine whether tobramycin as ion-pair incorporated in mucoadhesive Solid Lipid Nanoparticles (SLN) reaches the inner parts of the eye favoring drug activity. After technological characterization of the tobramycin entrapped SLN formulation (Tobra-SLN), a pharmacokinetic study in rabbits after topical instillation and intravenous administration of the formulation has been carried out. In addition, the intracellular activity of Tobra-SLN formulation against phagocytosed Pseudomonas aeruginosa was investigated. The SLN were spherical in shape, and showed a hydrodynamic diameter of about 80nm, a negative zeta potential (-25.7mV) with a polydispersity index of 0.15, representative of a colloidal dispersion with high quality, characterized by an unimodal relatively narrow size distribution. As demonstrated by FTIR and DSC, tobramycin ion-pair could be concentrated into lipid inner core of SLN, without interaction with the stearic acid, thus promoting a slow and constant drug release profile in the dissolution medium. Surprisingly, the drug concentration was significantly higher in all ocular tissues after ocular and intravenous administration of Tobra-SLN formulation with respect to reference formulations and only Tobra-SLN allowed the penetration of drug into retina. Furthermore, the use of Tobra-SLN resulted in both higher intraphagocytic antibiotic concentrations in polymorphonuclear granulocytes and greater bactericidal activity against intracellular Pseudomonas aeruginosa, probably due to the ability of Tobra-SLN to penetrate either into phagocytic cells, or alternatively to cross bacterial barrier. The present study broadens the knowledge on the use of SLN as carriers for ocular drug delivery to the posterior chamber and might open new avenues for treatment of ocular infections, representing a strategy to overcome the microbial resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.