Among the three major mitogen-activated protein kinase (MAPK) cascades--the extracellular signal regulated kinase (ERK) pathway, the c-JUN N-terminal/stress-activated protein kinase (JNK/SAPK) pathway, and the reactivating kinase (p38) pathway--retinoic acid selectively utilizes ERK but not JNK/SAPK or p38 when inducing myeloid differentiation of HL-60 human myeloblastic leukemia cells. Retinoic acid is known to activate ERK2. The present data show that the activation is selective for this MAPK pathway. JNK/SAPK or p38 are not activated by retinoic acid. Presumably because it activates relevant signaling pathways including MAPK, the polyoma middle T antigen, as well as certain transformation defective mutants thereof, is known to promote retinoic acid-induced differentiation, although the mechanism of action is not well understood. The present results show that consistent with the selective involvement of ERK2, ectopic expression of either the polyoma middle T antigen or its dl23 mutant, which is defective for PLCgamma and PI-3 kinase activation, or the delta205 mutant, which in addition is also weakened for activation of src-like kinases, caused no enhanced JNK/SAPK or p38 kinase activity that promoted the effects of retinoic acid. However, all three of these polyoma antigens are known to enhance ERK2 activation and promote differentiation induced by retinoic acid. Polyoma-activated MAPK signaling relevant to retinoic acid-induced differentiation is thus restricted to ERK2 and does not involve JNK/SAPK or p38. Taken together, the data indicate that among the three parallel MAPK pathways, retinoic acid-induced HL-60 myeloid differentiation selectively depends on activating ERK but not the other two MAPK pathways, JNK/SAPK or p38, with no apparent cross talk between pathways. Furthermore, the striking ability of polyoma middle T antigens to promote retinoic acid-induced differentiation appears to utilize ERK, but not JNK/SPK or p38 signaling.
Retinoic acid-induced expression of the CD38 ectoenzyme receptor in HL-60 human myeloblastic leukemia cells is regulated by RARalpha and RXR, and enhanced or prevented cell differentiation depending on the level of expression per cell. RARalpha activation caused CD38 expression, as did RXR activation but not as effectively. Inhibition of MAPK signaling through MEK inhibition diminished the induced expression by both RARs and RXRs. Expression of CD38 enhanced retinoic acid-induced myeloid differentiation and G0 cell cycle arrest, but at higher expression levels, induced differentiation was blocked and retinoic acid induced a loss of cell viability instead. In the case of 1,25-dihydroxyvitamin D3, induced monocytic differentiation was also enhanced by CD38 and not enhanced by higher expression levels, but without induced loss of viability. Expression levels of CD38 thus regulated the cellular response to retinoic acid, either propelling cell differentiation or loss of viability. The cellular effects of CD38 thus depend on its expression level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.