The phase transformation properties of liquid water to vapor is characterized by optical excitation of the lithographically fabricated single gold nanowrenches and contrasted to the phase transformation properties of gold nanoparticles located and optically excited in a bulk solution system [two and three dimensions]. The 532 nm continuous wave excitation of a single gold nanowrench results in superheating of the water to the spinodal decomposition temperature of 580 ± 20 K with bubble formation below the spinodal decomposition temperature being a rare event. Between the spinodal decomposition temperature and the boiling point liquid water is trapped into a metastable state because a barrier to vapor nucleation exists that must be overcome before the thermodynamically stable state is realized. The phase transformation for an optically heated single gold nanowrench is different from the phase transformation of optically excited colloidal gold nanoparticles solution where collective heating effects dominates and leads to the boiling of the solution exactly at the boiling point. In the solution case, the optically excited ensemble of nanoparticles collectively raises the ambient temperature of water to the boiling point where liquid is converted into vapor. The striking difference in the boiling properties of the single gold nanowrench and the nanoparticle solution system can be explained in terms of the vapor-nucleation mechanism, the volume of the overheated liquid, and the collective heating effect. The interpretation of the observed regimes of heating and vaporization is consistent with our theoretical modeling. In particular, we explain with our theory why the boiling with the collective heating in a solution requires 3 orders of magnitude less intensity compared to the case of optically driven single nanowrench.
Functionalization of monomers is important for various applications of polymers from electronics to surface coatings. Polymer chemists utilize methacrylate-based monomers to design polymers with wider application features. In this work, ethyl methacrylate-based monomers are functionalized with varying bulky substituents, methoxy (−OCH3), ethoxy (−OEt), isopropoxy (−O i Pr), tert-butoxy (−O t Bu), and phenoxy (−OPh), at the ethyl end position. These substituents are selected to understand the steric consequences of modification with a bulkier group. This study allows the determination of how the substitution affects the overall conformation of the monomer at the air–liquid interface using the sum frequency generation spectroscopic (SFGS) technique. The SFG spectral results were different for all monomers. To emphasize, the SFG intensity profile at ∼2910 cm–1 (assigned as the methyl symmetric stretch, −CH3 SS) is more noticeable in the SSP spectra compared to other vibrational modes in the SSP spectra. On the basis of the spectral and global fitting, the change in the intensity of the ∼2910 cm–1 peak was affected by an increase in the number of methyl groups in the chemical structure of the monomers. This observation has become more visible for −O i Pr- and −O t Bu-substituted monomers. Orientation distribution analysis was performed for the −CH3 SS of substituted −OCH3 and −OPh monomers using the calculated amplitude ratios of SSP and PPP polarizations. This analysis shows a narrow distribution angle of <30° for average tilt angles near the surface plane for the −OCH3-substituted monomer. Meanwhile, narrow distribution angles were obtained for the average tilt angles closer to the surface normal for the −OPh-substituted monomer. On the basis of the results, the change in the intensity is affected by the number density of the vibrational modes present at the interface and/or the orientation distribution of the interfacial molecules. The SFG spectral results were compared to our measured surface tension (ST) results. The ST values followed a trend with increasing number of −CH3 groups of the substituted monomers according to −OCH3 > −OEt > −O i Pr > −O t Bu. The −OPh-substituted monomer, 2-phenoxyethyl methacrylate (PhEMA), had a high ST value, which is the result of the intermolecular forces, including π-stacking interactions. The ST value of PhEMA favored the SFG spectral data because the aromatic CH stretch was observed and can only be detected if the −OPh group is oriented perpendicular to the surface plane. These results facilitate understanding the effects of the substituents on the conformations of the monomers. Moreover, these results will help correlate these effects with the physicochemical properties of the respective polymers.
The thermal conductance from a hydrophobic gold aqueous interface is measured with increasing solute concentration. A small amount of aqueous solute molecules (1 solute molecule in 550 water molecules) dramatically increases the heat dissipation into the surrounding liquid. This result is consistent with a thermal conductance that is limited by an interface interaction where minority aqueous components significantly alter the surface properties and heat transport through the interface. The increase in heat dissipation can be used to make an extremely sensitive molecular detector that can be scaled to give single molecule detection without amplification or utilizing fluorescence labels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.