PI3Kδ is a lipid kinase and a member of a larger family of enzymes, PI3K class IA(α, β, δ) and IB (γ), which catalyze the phosphorylation of PIP2 to PIP3. PI3Kδ is mainly expressed in leukocytes, where it plays a critical, nonredundant role in B cell receptor mediated signaling and provides an attractive opportunity to treat diseases where B cell activity is essential, e.g., rheumatoid arthritis. We report the discovery of novel, potent, and selective PI3Kδ inhibitors and describe a structural hypothesis for isoform (α, β, γ) selectivity gained from interactions in the affinity pocket. The critical component of our initial pharmacophore for isoform selectivity was strongly associated with CYP3A4 time-dependent inhibition (TDI). We describe a variety of strategies and methods for monitoring and attenuating TDI. Ultimately, a structure-based design approach was employed to identify a suitable structural replacement for further optimization.
Studies are reported on the assembly of the branched C-trisaccharide, alpha-D-Man-(1-->3)-[alpha-D-Man-(1-->6)]-D-Man, representing the core region of the asparagine-linked oligosaccharides. The key step in this synthesis uses a SmI(2)-mediated coupling of two mannosylpyridyl sulfones to a C3,C6-diformyl branched monosaccharide unit, thereby assembling all three sugar units in one reaction and with complete stereocontrol at the two anomeric carbon centers. Subsequent tin hydride-based deoxygenation followed by a deprotection step produces the target C-trimer. In contrast to many of the other C-glycosylation methods, this approach employes intact carbohydrate units as C-glycosyl donors and acceptors, which in many instances parallels the well-studied O-glycosylation reactions. The synthesis of the C-disaccharides alpha-D-Man-(1-->3)-D-Man and alpha-D-Man-(1-->6)-D-Man is also described, they being necessary for the following conformational studies of all three carbohydrate analogues both in solution and bound to several mannose-binding proteins.
Bloom (BLM) and Werner (WRN) syndrome proteins are members of the RecQ family of SF2 DNA helicases. In this paper, we show that restricting the rotational DNA backbone flexibility, by introducing vinylphosphonate internucleotide linkages in the translocating DNA strand, inhibits efficient duplex unwinding by these enzymes. The human single-stranded DNA binding protein replication protein A (RPA) fully restores the unwinding activity of BLM and WRN on vinylphosphonate-containing substrates while the heterologous single-stranded DNA binding protein from Escherichia coli (SSB) restores the activity only partially. Both RPA and SSB fail to restore the unwinding activity of the SF1 PcrA helicase on modified substrates, implying specific interactions of RPA with the BLM and WRN helicases. Our data highlight subtle differences between SF1 and SF2 helicases and suggest that although RecQ helicases belong to the SF2 family, they are mechanistically more similar to the SF1 PcrA helicase than to other SF2 helicases that are not affected by vinylphosphonate modifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.