This review is mainly focused on the optoelectronic properties of diamond-based one-dimensional-metal-oxide heterojunction. First, we briefly introduce the research progress on one-dimensional (1D)-metal-oxide heterojunctions and the features of the p-type boron-doped diamond (BDD) film; then, we discuss the use of three oxide types (ZnO, TiO2 and WO3) in diamond-based-1D-metal-oxide heterojunctions, including fabrication, epitaxial growth, photocatalytic properties, electrical transport behavior and negative differential resistance behavior, especially at higher temperatures. Finally, we discuss the challenges and future trends in this research area. The discussed results of about 10 years’ research on high-performance diamond-based heterojunctions will contribute to the further development of photoelectric nano-devices for high-temperature and high-power applications.
The heavier alkaline-earth hydrides AeH2 (Ae = Ca, Sr, and Ba) are considered as promising materials for hydrogen energy storage. Pressure-induced structural changes in AeH2 materials could improve hydrogen transport properties and result in a better understanding of the structure-property relationship. In this work, pressure evolution of carrier transport properties of SrH2 was investigated using impedance spectroscopy measurements at room temperature and first-principles calculations. The pressure-induced structure phase transition from a Pnma phase to a P63/mmc phase was accompanied by a transition from pure electronic conduction to mixed ionic-electronic conduction, which was related to the ionic migration barrier energy. In the P63/mmc phase, the H− ionic and electronic resistances of bulk and grain boundaries were distinguished, respectively. The total resistance of SrH2 decreased by about four orders of magnitude after the phase transition. This work provides critical insight into the structure-conduction relationship and the role of grain boundaries in the transport process of alkaline-earth hydrides under high pressure.
Nanostructured n-type metal oxides/p-type boron-doped diamond heterojunctions have demonstrated a typical rectification feature and/or negative differential resistance (NDR) potentially applied in wide fields. Recently, the fabrication and electronic transport behavior of n-WO3 nanorods/p-diamond heterojunction at high temperatures were studied by Wang et al (2017 Appl. Phys. Lett.
110 052106), which opened the door for optoelectronic applications that can operate at high-temperatures, high-power, and in various harsh environments. In this perspective, an overview was presented on the future directions, challenges and opportunities for the optoelectronic applications based on the n-WO3 nanostructures/p-diamond heterojunction. We focus, in particular, on the prospects for its high temperature NDR, UV photodetector, field emission emitters, photocatalyst and optical information storage for a wide range of new optoelectronic applications.
Proton-conducting BaZrO3-doped electrolytes are considered as potential high temperature proton conductors due to their high ionic conductivity and electrical efficiency in the operating temperature range of solid oxide fuel cells. However, doping leads to a decrease in grain boundary conductivity and greatly limits its applications. Here, the charge transport properties of sub-micro and nano-BaZrO3 electrolytes were studied by in situ high-pressure impedance measurements and first-principles calculations. Mixed ionic-electronic conduction was found in both samples in the whole pressure range. Pressure-induced negative capacitance in the tetragonal phase of nano-BaZrO3 was observed, which was related to the space charge layer of grain boundaries as well as the electrostrictive strain of grains. The enhanced electrostrictive effect was attributed to the existence of polar nano-domains in nano-BaZrO3. Furthermore, the coincident imaginary part of impedance and modulus peaks on the frequency scale indicated a non-localized carrier conduction in the tetragonal phase of nano-BaZrO3. The grain boundary conductivity of nano-BaZrO3 was enhanced by four orders of magnitude, and the impedance response changed from a constant phase element to an ideal capacitance, which was accompanied by the cubic to tetragonal phase transition. At a switching frequency of 0.1 Hz, the real part of the dielectric function of nano-BaZrO3 increases sharply with frequencies from negative to positive values, exhibiting a plasma-like Drude behavior. Our results provide insight into the optimization and application of BaZrO3-based proton conductors in solid oxide fuel cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.