Pollen flow, seed dispersal and individual reproductive success can be simultaneously estimated from the genotypes of adults and offspring using stochastic models. Using four polymorphic microsatellite loci, gene flow of the wind-pollinated and wind-seed-dispersed dioecious tree species, Fraxinus mandshurica var. japonica, was quantified in a riparian forest, in northern Japan. In a 10.5-ha plot, 74 female adults, 76 male adults and 292 current-year seedlings were mapped and genotyped, together with 200 seeds. To estimate dispersal kernels of pollen and seeds, we applied normal, exponential power, Weibull, bivariate t-distribution kernels, and two-component models consisting of two normal distribution functions, one with a small and one with a large variance. A two-component pollen flow model with a small contribution (26.1%) from short-distance dispersal (sigma = 7.2 m), and the rest from long-distance flow (sigma = 209.9 m), was chosen for the best-fitting model. The average distance that integrated pollen flows inside and outside the study plot was estimated to be 196.8 m. Tree size and flowering intensity affected reproduction, and there appeared to be critical values that distinguished reproductively successful and unsuccessful adults. In contrast, the gene flow model that estimated both pollen and seed dispersal from established seedlings resulted in extensive seed dispersal, and the expected spatial genetic structures did not satisfactorily fit with the observations, even for the selected model. Our results advanced small-scale individual-based parentage analysis for quantifying fat-tailed gene flow in wind-mediated species, but also clarified its limitations and suggested future possibilities for gene flow studies.
Few studies have analyzed pollen and seed movements at local scale, and genetic differentiation among populations covering the geographic distribution range of a species. We carried out such a study on Cercidiphyllum japonicum; a dioecious broad-leaved tree of cool-temperate riparian forest in Japan. We made direct measurement of pollen and seed movements in a site, genetic structure at the local scale, and genetic differentiation between populations covering the Japanese Archipelago. Parentage analysis of seedlings within a 20-ha study site indicated that at least 28.8% of seedlings were fertilized by pollen from trees outside the study site. The average pollination distance within the study site was 129 m, with a maximum of 666 m. The genotypes of 30% of seedlings were incompatible with those of the nearest female tree, and the maximum seed dispersal distance within the study site was over 300 m. Thus, long-distance gene dispersal is common in this species. The correlation between genetic relatedness and spatial distance among adult trees within the population was not significant, indicating an absence of fine-scale genetic structure perhaps caused by high levels of pollen flow and overlapping seed shadows. Six populations sampled throughout the distribution of C. japonicum in Japan showed significant isolation-by-distance but low levels of genetic differentiation (F ST ¼ 0.043), also indicating long-distance gene flow in C. japonicum. Longdistance gene flow had a strong influence on the genetic structure at different spatial scales, and contributes to the maintenance of genetic diversity in C. japonicum. Heredity (2006) 96, 79-84.
Xylem and phloem transport of cadmium (Cd), a toxic element, into rice grains was compared with transport of the nutritional elements zinc (Zn) and iron (Fe) in rice plants (Oryza sativa L.) grown under continuously flooded soil conditions. To explore their transport, the concentrations of Cd, Zn and Fe in xylem and phloem saps and in different tissues were determined at four (10th-leaf, 14th-leaf, early grain-filling, mature) stages using semi-dwarf rice plants (cv. Kantou) grown on soil contaminated with Cd fourfold higher than average Cd contamination in Japan. Phloem saps were collected from mature leaf sheathes at the first two stages and from the uppermost internodes at early grain filling. Xylem saps were collected from cut stems. The Cd concentrations in the xylem and phloem saps collected at the 14th-leaf and early grain-filling stages were lower than those at the 10th-leaf stage, and the Cd concentration in dehusked grain was low (0.05 mg kg )1 dry weight [DW]). In contrast, Zn and Fe concentrations in the xylem and phloem saps were maintained throughout the growing season, and their grain concentrations were high (57 mg Zn and 29 mg Fe kg )1 DW). Schemes of metal transport to the grains during early grain-filling to mature stages for different metals are proposed. Cadmium may be transported from the flag leaf blade to the grains via the phloem and additionally after xylem-to-phloem transfer at the stem and spikelet nodes if supplied from the roots. Zinc in the grains and partly in the husks may be actively supplied via the phloem after mobilization from the blades of the flag and upper leaves and also by xylem-tophloem transfer in the nodes. Iron stored in the leaves may be transported to the grains via the phloem.
Grape (Vitis vinifera) accumulates various polyphenolic compounds, which protect against environmental stresses, including ultraviolet-C (UV-C) light and pathogens. In this study, we looked at the transcriptome and metabolome in grape berry skin after UV-C irradiation, which demonstrated the effectiveness of omics approaches to clarify important traits of grape. We performed transcriptome analysis using a genome-wide microarray, which revealed 238 genes up-regulated more than 5-fold by UV-C light. Enrichment analysis of Gene Ontology terms showed that genes encoding stilbene synthase, a key enzyme for resveratrol synthesis, were enriched in the up-regulated genes. We performed metabolome analysis using liquid chromatography-quadrupole time-of-flight mass spectrometry, and 2,012 metabolite peaks, including unidentified peaks, were detected. Principal component analysis using the peaks showed that only one metabolite peak, identified as resveratrol, was highly induced by UV-C light. We updated the metabolic pathway map of grape in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and in the KaPPA-View 4 KEGG system, then projected the transcriptome and metabolome data on a metabolic pathway map. The map showed specific induction of the resveratrol synthetic pathway by UV-C light. Our results showed that multiomics is a powerful tool to elucidate the accumulation mechanisms of secondary metabolites, and updated systems, such as KEGG and KaPPA-View 4 KEGG for grape, can support such studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.