The aim of this study is to propose a novel system that has an ability to detect intra-fractional motion during radiotherapy treatment in real-time using three-dimensional surface taken by a depth camera, Microsoft Kinect v1. Our approach introduces three new aspects for three-dimensional surface tracking in radiotherapy treatment. The first aspect is a new algorithm for noise reduction of depth values. Ueda's algorithm was implemented and enabling a fast least square regression of depth values. The second aspect is an application for detection of patient's motion at multiple points in thracoabdominal regions. The third aspect is an estimation of three-dimensional surface from multiple depth values. For evaluation of noise reduction by Ueda's algorithm, two respiratory patterns are measured by the Kinect as well as a laser range meter. The resulting cross correlation coefficients between the laser range meter and the Kinect were 0.982 for abdominal respiration and 0.995 for breath holding. Moreover, the mean cross correlation coefficients between the signals of our system and the signals of Anzai with respect to participant's respiratory motion were 0.90 for thoracic respiration and 0.93 for abdominal respiration, respectively. These results proved that the performance of the developed system was comparable to existing motion monitoring devices. Reconstruction of three-dimensional surface also enabled us to detect the irregular motion and breathing arrest by comparing the averaged depth with predefined threshold values.
For interventional radiology, dose management has persisted as a crucially important issue to reduce radiation exposure to patients and medical staff. This study designed a real-time dose visualization system for interventional radiology designed with mixed reality technology and Monte Carlo simulation. An earlier report described a Monte-Carlo-based estimation system, which simulates a patient’s skin dose and air dose distributions, adopted for our system. We also developed a system of acquiring fluoroscopic conditions to input them into the Monte Carlo system. Then we combined the Monte Carlo system with a wearable device for three-dimensional holographic visualization. The estimated doses were transferred sequentially to the device. The patient’s dose distribution was then projected on the patient body. The visualization system also has a mechanism to detect one’s position in a room to estimate the user’s exposure dose to detect and display the exposure level. Qualitative tests were conducted to evaluate the workload and usability of our mixed reality system. An end-to-end system test was performed using a human phantom. The acquisition system accurately recognized conditions that were necessary for real-time dose estimation. The dose hologram represents the patient dose. The user dose was changed correctly, depending on conditions and positions. The perceived overall workload score (33.50) was lower than the scores reported in the literature for medical tasks (50.60) for computer activities (54.00). Mixed reality dose visualization is expected to improve exposure dose management for patients and health professionals by exhibiting the invisible radiation exposure in real space.
Low-count SPECT images are well known to be smoothed strongly by a Butterworth filter for statistical noise reduction. Reconstructed images have a low signal-to-noise ratio (SNR) and spatial resolution because of the removal of high-frequency signal components. Using the developed robust adaptive bilateral filter (RABF), which was designed as a pre-stage filter of the Butterworth filter, this study was conducted to improve SNR without degrading the spatial resolution for low-count SPECT imaging. The filter can remove noise while preserving spatial resolution. To evaluate the proposed method, we extracted SNR and spatial resolution in a phantom study. We also conducted paired comparison for visual image quality evaluation in a clinical study. Results show that SNR was increased 1.4 times without degrading the spatial resolution. Visual image quality was improved significantly (p < 0.01) for clinical low-count data. Moreover, the accumulation structure became sharper. A structure embedded in noise emerged. Our method, which denoises without degrading the spatial resolution for low-count SPECT images, is expected to increase the effectiveness of diagnosis for low-dose scanning and short acquisition time scanning.
Purpose: To obtain a 3D surface data of a patient in a non‐invasive way can substantially reduce the effort for the registration of patient in radiation therapy. To achieve this goal, we introduced the multiple view stereo technique, which is known to be used in a “photo tourism” on the internet. Methods: 70 Images were taken with a digital single‐lens reflex camera from different angles and positions. The camera positions and angles were inferred later in the reconstruction step. A sparse 3D reconstruction model was locating by SIFT features, which is robust for rotation and shift variance, in each image. We then found a set of correspondences between pairs of images by computing the fundamental matrix using the eight‐point algorithm with RANSAC. After the pair matching, we optimized the parameter including camera positions to minimize the reprojection error by use of bundle adjustment technique (non‐linear optimization). As a final step, we performed dense reconstruction and associate a color with each point using the library of PMVS. Results: Surface data were reconstructed well by visual inspection. The human skin is reconstructed well, althogh the reconstruction was time‐consuming for direct use in daily clinical practice. Conclusion: 3D reconstruction using multi view stereo geometry is a promising tool for reducing the effort of patient setup. This work was supported by JSPS KAKENHI(25861128).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.