The development of technologies for the in vitro amplification of the abnormal conformers of prion protein (PrP Sc ) has generated the potential for a novel diagnostic assay for prion disease. Previously, we developed a new PrP Sc amplification assay designated quaking-induced conversion (QUIC), which involves intermittent, automated shaking of the substrate, soluble recombinant PrP. We further improved the rapidity and practicality of this method by combining it with thioflavin T fluorescence to monitor the amyloid fibril formation. This assay, termed "real-time QUIC (RT-QUIC)", allows within 48 h, the detection of ≥1 fg of PrP Sc in diluted Creutzfeldt-Jakob disease (CJD) brain homogenate. Moreover, we assessed the technique first in a series of Japanese subjects, and then in a blind study of 30 cerebrospinal fluid specimens from Australia, which achieved greater than 80% sensitivity and 100% specificity. These findings indicate the promising enhanced diagnostic capacity of RT-QUIC in the ante-mortem evaluation of suspected CJD. Definitive ante-mortem confirmation of CJD requires the detection of PrP Sc in patient biopsy specimens, the practice of which is discouraged because it is both invasive and poses risks to health care personnel. Recently, however, in vitro PrP Sc amplification techniques, including protein misfolding cyclic amplification (PMCA) 5-7 , the amyloid seeding assay 8 , as well as QUIC have been reported to enable the direct and highly sensitive detection of PrP Sc in various tissues, including cerebrospinal fluid (CSF). QUIC assays involve the use of soluble recombinant PrP (rPrP-sen) as a substrate, which is seeded with PrP Sc , and then subjected to intermittent automated shaking. This technique can be performed more easily than the PMCA, which requires repeated sonication. Previous studies have demonstrated that QUIC assays correctly discriminated between normal and scrapie-infected CSF samples in both hamster and sheep prion disease models 9,10 . However, ultrasensitive PrP Sc detection in CSF from CJD subjects has not yet been accomplished. Accordingly, we further refined the QUIC 5 assay to improve its sensitivity and practicability, and then applied the technique in a blind pilot study to detect PrP Sc in CJD-CSF specimens.Given that a correlation between protease-resistant rPrP aggregate (rPrP-res) levels and thioflavin T (ThT) fluorescence had been shown previously 7 , we sought to determine the relative kinetics of rPrP-res formation by monitoring levels of ThT fluorescence in the QUIC assay. This was intended to minimize the time needed to detect rPrP-res. We first tested whether PrP Sc -dependent rPrP-res (rPrP-res (Sc) ) formation could be induced using a microplate reader with intermittent shaking. Human rPrP-sen (rHuPrP-sen) and a 10 -7 dilution of CJD (molecular subtype MM1) brain homogenate (BH) were used as the substrate and "seed", respectively. We conducted QUIC reactions at various concentrations (0, 0.25, 0.5 and 1.0 M) of guanidine-HCl (GdnHCl), because it h...
Prion protein (PrP) is a glycoprotein constitutively expressed on the neuronal cell surface. A protease-resistant isoform of prion protein is implicated in the pathogenesis of a series of transmissible spongiform encephalopathies. We have developed a line of mice homozygous for a disrupted PrP gene in which the whole PrP-coding sequence is replaced by a drug-resistant gene. In keeping with previous results, we find that homozygous loss of the PrP gene has no deleterious effect on the development of these mice and renders them resistant to prion. The PrP-null mice grew normally after birth, but at about 70 weeks of age all began to show progressive symptoms of ataxia. Impaired motor coordination in these ataxic mice was evident in a rotorod test. Pathological examination revealed an extensive loss of Purkinje cells in the vast majority of cerebellar folia, suggesting that PrP plays a role in the long-term survival of Purkinje neurons.
Prion proteins are key molecules in transmissible spongiform encephalopathies (TSEs), but the precise mechanism of the conversion from the cellular form (PrP C ) to the scrapie form (PrP Sc ) is still unknown. Here we discovered a chemical chaperone to stabilize the PrP C conformation and identified the hot spots to stop the pathogenic conversion. We conducted in silico screening to find compounds that fitted into a ''pocket'' created by residues undergoing the conformational rearrangements between the native and the sparsely populated high-energy states (PrP*) and that directly bind to those residues. Forty-four selected compounds were tested in a TSE-infected cell culture model, among which one, 2-pyrrolidin-1-yl-N-[4-[4-(2-pyrrolidin-1-yl-acetylamino)-benzyl]-phenyl]-acetamide, termed GN8, efficiently reduced PrP Sc . Subsequently, administration of GN8 was found to prolong the survival of TSE-infected mice. Heteronuclear NMR and computer simulation showed that the specific binding sites are the A-S2 loop (N159) and the region from helix B (V189, T192, and K194) to B-C loop (E196), indicating that the intercalation of these distant regions (hot spots) hampers the pathogenic conversion process. Dynamics-based drug discovery strategy, demonstrated here focusing on the hot spots of PrP C , will open the way to the development of novel anti-prion drugs.anti-prion compound ͉ binding sites ͉ chemical chaperone ͉ dynamicsbased drug discovery ͉ transmissible spongiform encephalopathy
We analysed the epidemiological data and clinical features of patients with prion diseases that had been registered by the Creutzfeldt-Jakob Disease Surveillance Committee, Japan, over the past 10 years, since 1999. We obtained information on 1685 Japanese patients suspected as having prion diseases and judged that 1222 patients had prion diseases, consisting of definite (n=180, 14.7%) and probable (n=1029, 84.2%) cases, except for dura mater graft-associated Creutzfeldt-Jakob disease which also included possible cases (n=13, 1.1%). They were classified into 922 (75.5%) with sporadic Creutzfeldt-Jakob disease, 216 (17.7%) with genetic prion diseases, 81 (6.6%) with acquired prion diseases, including 80 cases of dura mater graft-associated Creutzfeldt-Jakob disease and one case of variant Creutzfeldt-Jakob disease, and three cases of unclassified Creutzfeldt-Jakob disease (0.2%). The annual incidence rate of prion disease ranged from 0.65 in 1999 to 1.10 in 2006, with an average of 0.85, similar to European countries. Although methionine homozygosity at codon 129 polymorphism of the prion protein gene was reported to be very common (93%) in the general Japanese population, sporadic Creutzfeldt-Jakob disease in Japan was significantly associated with codon 129 homozygosity (97.5%), as reported in western countries. In sporadic Creutzfeldt-Jakob disease, MM1 type (Parchi's classification) is the most common, as in western countries. Among atypical sporadic Creutzfeldt-Jakob disease cases, the MM2 type appeared most common, probably related to the very high proportion of methionine allele in the Japanese population. As for iatrogenic Creutzfeldt-Jakob disease, only dura mater graft-associated Creutzfeldt-Jakob disease cases were reported in Japan and, combined with the data from previous surveillance systems, the total number of dura mater graft-associated Creutzfeldt-Jakob disease was 138, comprising the majority of worldwide dura mater graft-associated Creutzfeldt-Jakob disease patients. Regarding genetic prion diseases, the most common mutation of prion protein gene was V180I (41.2%), followed by P102L (18.1%), E200K (17.1%) and M232R (15.3%), and this distribution was quite different from that in Europe. In particular, V180I and M232R were quite rare mutations worldwide. Patients with V180I or M232R mutations rarely had a family history of prion diseases, indicating that a genetic test for sporadic cases is necessary to distinguish these from sporadic Creutzfeldt-Jakob disease. In conclusion, our prospective 10-year surveillance revealed a frequent occurrence of dura mater graft-associated Creutzfeldt-Jakob disease, and unique phenotypes of sporadic Creutzfeldt-Jakob disease and genetic prion diseases related to the characteristic distribution of prion protein gene mutations and polymorphisms in Japan, compared with those in western countries.
A national system for surveillance of prion diseases (PrDs) was established in Japan in April 1999. Here, we analyzed the relationships among prion protein gene (PRNP) mutations and the clinical features, cerebrospinal fluid (CSF) markers, and pathological characteristics of the major genotypes of genetic PrDs (gPrDs). We retrospectively analyzed age at onset and disease duration; the concentrations and incidences of 14-3-3 protein, tau protein, and abnormal prion protein (PrPSc) in the CSF of 309 gPrD patients with P102L, P105L, E200K, V180I, or M232R mutations; and brain pathology in 32 autopsied patients. Three clinical phenotypes were seen: rapidly progressive Creutzfeldt-Jakob disease (CJD), which included 100% of E200K cases, 70% of M232R, and 21% of P102L; slowly progressive CJD, which included 100% of V180I and 30% of M232R; and Gerstmann-Sträussler-Scheinker disease, which included 100% of P105L and 79% of P102L. PrPSc was detected in the CSF of more than 80% of patients with E200K, M232R, or P102L mutations but in only 39% of patients with V180I. V180I was accompanied by weak PrP immunoreactivity in the brain. Patients negative for PrPSc in the CSF were older at disease onset than positive patients. Patients with mutations associated with high 14-3-3 protein levels in the CSF typically had synaptic deposition of PrP in the brain and a rapid course of disease. The presence of small PrP protein fragments in brain homogenates was not correlated with other clinicopathological features. Positivity for PrPSc in the CSF may reflect the pathological process before or at disease onset, or abnormality in the secretion or metabolism of PrPSc. The amount of 14-3-3 protein in the CSF likely indicates the severity of the pathological process and accompanying neuronal damage. These characteristic features of the CSF in cases of gPrD will likely facilitate accurate diagnosis and clinicopathological study of the various disease subtypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.