Prion proteins are key molecules in transmissible spongiform encephalopathies (TSEs), but the precise mechanism of the conversion from the cellular form (PrP C ) to the scrapie form (PrP Sc ) is still unknown. Here we discovered a chemical chaperone to stabilize the PrP C conformation and identified the hot spots to stop the pathogenic conversion. We conducted in silico screening to find compounds that fitted into a ''pocket'' created by residues undergoing the conformational rearrangements between the native and the sparsely populated high-energy states (PrP*) and that directly bind to those residues. Forty-four selected compounds were tested in a TSE-infected cell culture model, among which one, 2-pyrrolidin-1-yl-N-[4-[4-(2-pyrrolidin-1-yl-acetylamino)-benzyl]-phenyl]-acetamide, termed GN8, efficiently reduced PrP Sc . Subsequently, administration of GN8 was found to prolong the survival of TSE-infected mice. Heteronuclear NMR and computer simulation showed that the specific binding sites are the A-S2 loop (N159) and the region from helix B (V189, T192, and K194) to B-C loop (E196), indicating that the intercalation of these distant regions (hot spots) hampers the pathogenic conversion process. Dynamics-based drug discovery strategy, demonstrated here focusing on the hot spots of PrP C , will open the way to the development of novel anti-prion drugs.anti-prion compound ͉ binding sites ͉ chemical chaperone ͉ dynamicsbased drug discovery ͉ transmissible spongiform encephalopathy
To gain insight into the structural mechanism of the conformational conversion process of prion, we examined the potential amyloidogenic property of each secondary structural element in a mouse prion protein (mPrP) and discriminated their relative significance for the formation of amyloid fibrils. Although peptides corresponding to alpha-helix 2 and alpha-helix 3 (named H2 peptide and H3 peptide, respectively) formed the amyloid-like fibrils, their structures were quite different. H2 fibrils formed the ordered beta-sheet with the beta-turn conformation, and the resultant fibrils were long and straight. In contrast, H3 fibrils consisted of the beta-sheet with the random conformation, and the resultant fibrils were short and flexible. These properties are basically consistent with their hydrophobicity and beta-strand propensity profiles. To examine the cross reactivity between peptide fragments and full-length mPrP, we then carried out seeding experiments. While H2 seeds induced the formation of fibrils of full-length mPrP as quickly as full-length mPrP seeds, H3 seeds exhibited a long lag time. This implies that the region of alpha-helix 2 rather than alpha-helix 3 in mPrP has great potential for initiating fibril formation. As a whole, the alpha-helix 2 region would be crucial for the nucleation-dependent replication process of the prion protein.
To elucidate the mechanisms of ultrasonication on the amyloid fibril formation, we quantitatively determined the ultrasonic power using both calorimetry and potassium iodide (KI) oxidation, and under the properly calibrated ultrasonic power, we investigated the ultasonicationinduced amyloid formation process of the mouse prion protein (mPrP(23-231)). These methods revealed that the ultrasonic power in our system ranged from 0.3 to 2.7 W but entirely dependent on the positions of the ultrasonic stage. Intriguingly, the nucleation time of the amyloid fibrils was found to be shortened almost proportionally to the ultrasonic power, indicating that the probability of the occurrence of nucleus formation increases proportionally to the ultrasonic power. Moreover, mPrP(23-231) formed two types of aggregates: rigid fibrils and short fibrils with disordered aggregates, depending on the ultrasonic power. The nucleation of rigid fibrils required an ultrasonic power larger than 1.5 W. While at the strong ultrasonic power larger than 2.6 W, amyloid fibrils were formed early, but simultaneously fine fragmentation of fibrils occurred. Thus, an ultrasonic power of approximately 2.0 W would be suitable for the formation of rigid mPrP(23-231) fibrils under the conditions utilized (ultrasonication applied for 30 s every 9 min). As ultrasonication has been widely used to amplify the scrapie form of the prion protein, or other amyloids in vitro, the calorimetry and KI oxidation methods proposed here might help determining the adequate ultrasonic powers necessary to amplify them efficiently.
A system for displaying feel information, while manipulating virtual objects, which takes their dynamic behavior into account is introduced. The display is realized using multiple link mechanisms. New concept of impedance display and two ways of its realization, ' 'measuring force and displaying motion'' and ' 'measuring motion and displaying force,'' are proposed. Calculation algorithms for the driving input to the display device for the operation of both single-body and multi-body virtual objects are established. The validity of the proposed method is verified experimentally using a newly developed two-finger display device. Downloaded From: http://fluidsengineering.asmedigitalcollection.asme.org/ on 06/16/2015 Terms of Use: http://asme.org/terms Journal of Dynamic Systems, IVIeasurement, and Control DECEMBER 1995, Vol. 117/557 Downloaded From: http://fluidsengineering.asmedigitalcollection.asme.org/ on 06/16/2015 Terms of Use: http://asme.org/terms
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.