Background Evidence to date has shown that inequality in health, and vaccination coverage in particular, can have ramifications to wider society. However, whilst individual studies have sought to characterise these heterogeneities in immunisation coverage at national level, few have taken a broad and quantitative view of the contributing factors to heterogeneity in immunisation coverage and impact, i.e. the number of cases, deaths, and disability-adjusted life years averted. This systematic review aims to highlight these geographic, demographic, and sociodemographic characteristics through a qualitative and quantitative approach, vital to prioritise and optimise vaccination policies. Methods A systematic review of two databases (PubMed and Web of Science) was undertaken using search terms and keywords to identify studies examining factors on immunisation inequality and heterogeneity in vaccination coverage. Inclusion criteria were applied independently by two researchers. Studies including data on key characteristics of interest were further analysed through a meta-analysis to produce a pooled estimate of the risk ratio using a random effects model for that characteristic. Results One hundred and eight studies were included in this review. We found that inequalities in wealth, education, and geographic access can affect vaccine impact and vaccination dropout. We estimated those living in rural areas were not significantly different in terms of full vaccination status compared to urban areas but noted considerable heterogeneity between countries. We found that females were 3% (95%CI[1%, 5%]) less likely to be fully vaccinated than males. Additionally, we estimated that children whose mothers had no formal education were 28% (95%CI[18%,47%]) less likely to be fully vaccinated than those whose mother had primary level, or above, education. Finally, we found that individuals in the poorest wealth quintile were 27% (95%CI [16%,37%]) less likely to be fully vaccinated than those in the richest. Conclusions We found a nuanced picture of inequality in vaccination coverage and access with wealth disparity dominating, and likely driving, other disparities. This review highlights the complex landscape of inequity and further need to design vaccination strategies targeting missed subgroups to improve and recover vaccination coverage following the COVID-19 pandemic. Trial registration Prospero, CRD42021261927
Background: Childhood immunisation services have been disrupted by COVID-19. WHO recommends considering outbreak risk using epidemiological criteria when deciding whether to conduct preventive vaccination campaigns during the pandemic. Methods: We used 2-3 models per infection to estimate the health impact of 50% reduced routine vaccination coverage and delaying campaign vaccination for measles, meningococcal A and yellow fever vaccination in 3-6 high burden countries per infection. Results: Reduced routine coverage in 2020 without catch-up vaccination may increase measles and yellow fever disease burden in the modelled countries. Delaying planned campaigns may lead to measles outbreaks and increases in yellow fever burden in some countries. For meningococcal A vaccination, short term disruptions in 2020 are unlikely to have a significant impact. Conclusion: The impact of COVID-19-related disruption to vaccination programs varies between infections and countries. Funding: Bill and Melinda Gates Foundation and Gavi, the Vaccine Alliance.
C oronavirus disease (COVID-19) is a life-threatening respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an emerging zoonotic virus first identified in Wuhan, China (1). The first confirmed cases of COVID-19 were reported on January 12, 2020, from patients who had respiratory symptoms during December 8, 2019-January 2, 2020 (2). Despite early containment and mitigation measures (3), the high infectiousness, presymptomatic transmission, and prolonged transmissibility of SARS-CoV-2 (4,5) combined with other factors, such as globalization, led to the rapid spread of COVID-19 across the world. Rigorous contact-tracing and physical distancing measures implemented in different countries have been effective in delaying the epidemic during the contention phase (6-9). However, ensuing lockdowns and travel restrictions to minimize the burden on healthcare systems have led to a decline in wellbeing and an economic downturn and have had profound impacts in low-to-middle income countries (10). The contention phase in Colombia started on March 6, 2020, when the Instituto Nacional de Salud (INS; National Institute of Health) confirmed the first case of COVID-19 from a person returning to Colombia from Italy on February 26, 2020 (11). On March 23, a total 314 cases had been confirmed, which prompted the closure of all the country borders to contain the outbreak. On March 31, >10% of confirmed cases were among persons with no known exposure to a COV-ID-19 patient (12), presumably due to extensive community transmission. Colombia then implemented the mitigation phase, which included physical distancing as the main strategy to limit virus spread. By June 18, a total of 57,046 confirmed cases and 1,864 deaths had been reported in Colombia (13). The unprecedented global health and societal emergency posed by the COVID-19 pandemic urged data sharing and faster-than-ever outbreak research developments that are reflected in the >37,000 complete SARS-CoV-2 genomes made available through
Background:Vaccination is one of the most effective public health interventions. We investigate the impact of vaccination activities for Haemophilus influenzae type b, hepatitis B, human papillomavirus, Japanese encephalitis, measles, Neisseria meningitidis serogroup A, rotavirus, rubella, Streptococcus pneumoniae, and yellow fever over the years 2000–2030 across 112 countries.Methods:Twenty-one mathematical models estimated disease burden using standardised demographic and immunisation data. Impact was attributed to the year of vaccination through vaccine-activity-stratified impact ratios.Results:We estimate 97 (95%CrI[80, 120]) million deaths would be averted due to vaccination activities over 2000–2030, with 50 (95%CrI[41, 62]) million deaths averted by activities between 2000 and 2019. For children under-5 born between 2000 and 2030, we estimate 52 (95%CrI[41, 69]) million more deaths would occur over their lifetimes without vaccination against these diseases.Conclusions:This study represents the largest assessment of vaccine impact before COVID-19-related disruptions and provides motivation for sustaining and improving global vaccination coverage in the future.Funding:VIMC is jointly funded by Gavi, the Vaccine Alliance, and the Bill and Melinda Gates Foundation (BMGF) (BMGF grant number: OPP1157270 / INV-009125). Funding from Gavi is channelled via VIMC to the Consortium’s modelling groups (VIMC-funded institutions represented in this paper: Imperial College London, London School of Hygiene and Tropical Medicine, Oxford University Clinical Research Unit, Public Health England, Johns Hopkins University, The Pennsylvania State University, Center for Disease Analysis Foundation, Kaiser Permanente Washington, University of Cambridge, University of Notre Dame, Harvard University, Conservatoire National des Arts et Métiers, Emory University, National University of Singapore). Funding from BMGF was used for salaries of the Consortium secretariat (authors represented here: TBH, MJ, XL, SE-L, JT, KW, NMF, KAMG); and channelled via VIMC for travel and subsistence costs of all Consortium members (all authors). We also acknowledge funding from the UK Medical Research Council and Department for International Development, which supported aspects of VIMC's work (MRC grant number: MR/R015600/1).JHH acknowledges funding from National Science Foundation Graduate Research Fellowship; Richard and Peggy Notebaert Premier Fellowship from the University of Notre Dame. BAL acknowledges funding from NIH/NIGMS (grant number R01 GM124280) and NIH/NIAID (grant number R01 AI112970). The Lives Saved Tool (LiST) receives funding support from the Bill and Melinda Gates Foundation.This paper was compiled by all coauthors, including two coauthors from Gavi. Other funders had no role in study design, data collection, data analysis, data interpretation, or writing of the report. All authors had full access to all the data in the study and had final responsibility for the decision to submit for publication.
SummaryBackgroundChildhood immunisation services have been disrupted by the COVID-19 pandemic. WHO recommends considering outbreak risk using epidemiological criteria when deciding whether to conduct preventive vaccination campaigns during the pandemic.MethodsWe used 2-3 models per infection to estimate the health impact of 50% reduced routine vaccination coverage in 2020 and delay of campaign vaccination from 2020 to 2021 for measles vaccination in Bangladesh, Chad, Ethiopia, Kenya, Nigeria, and South Sudan, for meningococcal A vaccination in Burkina Faso, Chad, Niger, and Nigeria, and for yellow fever vaccination in the Democratic Republic of Congo, Ghana, and Nigeria. Our counterfactual comparative scenario was sustaining immunisation services at coverage projections made prior to COVID-19 (i.e. without any disruption).FindingsReduced routine vaccination coverage in 2020 without catch-up vaccination may lead to an increase in measles and yellow fever disease burden in the modelled countries. Delaying planned campaigns in Ethiopia and Nigeria by a year may significantly increased the risk of measles outbreaks (both countries did complete their SIAS planned for 2020). For yellow fever vaccination, delay in campaigns leads to a potential disease burden rise of >1 death per 100,000 people until the campaigns are implemented. For meningococcal A vaccination, short term disruptions in 2020 are unlikely to have a significant impact due to the persistence of direct and indirect benefits from past introductory campaigns of the 1 to 29-year-old population, bolstered by inclusion of the vaccine into the routine immunisation schedule accompanied by further catch-up campaigns.InterpretationThe impact of COVID-19-related disruption to vaccination programs varies between infections and countries. Planning and implementation of campaigns should consider country and infection-specific epidemiological factors and local immunity gaps worsened by the COVID-19 pandemic when prioritising vaccines and strategies for catch-up vaccination.FundingBill & Melinda Gates Foundation and Gavi, the Vaccine AllianceResearch in contextEvidence before the studyWe searched PubMed for (COVID-19 OR coronavirus OR SARS-CoV-2) AND (child health intervention OR vaccin* or immuni*) AND (disruption OR suspension OR reduction) AND (indirect effect OR health impact) on January 14, 2021, with no language restrictions. We found 178 articles of which 13 articles were relevant. Six articles reported some empirical data on immunization disruption in Bangladesh, Japan, Kenya, Nigeria, Pakistan, Saudi Arabia, South Africa, Spain and Italy, and a survey study focussed on immunization disruption in low and middle-income countries. One article proposed using the WHO health systems framework to assess the effects of COVID-19 on immunisation programmes in South Africa, another study on leveraging systems thinking and implementation science to improve immunization system performance in Africa, and two studies were review articles. One modelling study focused on the indirect effects, including reduction in routine immunisation services, of the COVID-19 pandemic on maternal and child mortality in low-income and middle-income countries. Another modelling study focused on a benefit-risk analysis of routine childhood immunisation during the COVID-19 pandemic in Africa. We also found one other study in the grey literature that analysed the impact on SARS-CoV-2 infections as a result of fixed-post and door-to-door vaccination campaigns targeted at children under five years of age in an Ethiopia-like setting.Added value of this studyWe estimated the increase in cases and deaths caused by the disruption to immunisation services leading to outbreaks for measles, meningococcal A and yellow fever in 10 countries. The reduction in routine immunisation coverage among under-immunised cohorts of children has enhanced the risk of outbreaks which cannot be averted without catch-up vaccination. This can lead to an increase of 9.89% (0.91 additional deaths per 100,000 individuals, or 48,000 in total) across the three diseases from 2020 to 2030 in the countries considered. Results vary by infection and country, but generally most excess deaths are due to measles. Postponing campaign immunisation may not have a detrimental short-term health impact if campaign immunisation is implemented ahead of future outbreaks caused by these immunity gaps.Implications of the available evidenceThe COVID-19 pandemic has caused significant disruptions to routine services and vaccination campaigns and resulted in immunity gaps with potential to cause outbreaks in the affected populations. The short-term and long-term health impact differ between measles, meningococcal A and yellow fever vaccination and by countries based on the local epidemiological situation. Thereby, catch-up vaccination should be planned by considering the heterogeneity in population susceptibility across different countries to measles, meningococcal A and yellow fever outbreaks and implemented in time to prevent these outbreaks. The study findings can inform risk-benefit trade-off discussions around the timing of campaigns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.