We recently generated a transgenic rat model for acute pancreatitis, which was apparently caused by a massive depletion of pancreatic polyamines spermidine and spermine due to inducible activation of their catabolism (Alhonen, L., Parkkinen, J. J., Keinä nen, T., Sinervirta, R., Herzig, K. H., and Jä nne, J. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 8290 -8295). When subjected to partial hepatectomy, these animals showed striking activation of polyamine catabolism at 24 h postoperatively with a profound decrease in hepatic spermidine and spermine pools and failure to initiate liver regeneration. Here we show that pancreatitis in this model could be totally prevented, as judged by histopathology and plasma ␣-amylase activity, by administration of 1-methylspermidine, a metabolically stable analogue of spermidine. Similarly, the analogue, given prior to partial hepatectomy, restored early liver regeneration in the transgenic rats, as indicated by a dramatic increase in the number of proliferating cell nuclear antigen-positive hepatocytes from about 1% to more than 40% in response to the drug. The present results suggest that the extremely high concentration of spermidine in the pancreas, in fact the highest in the mammalian body, may have a critical role in maintaining organ integrity. The failure to initiate liver regeneration in the absence of sufficient hepatic polyamine pools similarly indicates that polyamines are required for proper commencement of the regenerative process.The polyamines spermidine and spermine and their precursor putrescine are intimately associated with growth and differentiation of mammalian cells, yet their exact cellular functions have not been solved (1). In attempts to elucidate the physiological roles of the polyamines, we have generated a number of transgenic mouse and rat lines with genetically altered polyamine metabolism. The activation of polyamine biosynthesis through an overexpression of ornithine decarboxylase brings about many interesting phenotypic changes, such as male infertility (2, 3), yet these studies are complicated by the fact that overexpression of ornithine decarboxylase only expands tissue putrescine pools as the latter diamine is not further converted to spermidine and spermine (4, 5). Much more severe distortion of tissue polyamine pools has been achieved by activation of polyamine catabolism through an overexpression of spermidine/spermine N 1 -acetyltransferase (SSAT) 1 in transgenic rodents. The latter enzyme catalyzes the rate-controlling reaction in the catabolism of spermidine and spermine. After being acetylated, spermidine is converted to putrescine and spermine to spermidine by the action of polyamine oxidase (6). Overexpression of SSAT in transgenic rodents results in profound changes in tissue polyamine pools, such as the massive accumulation of putrescine, appearance of N 1 -acetylspermidine, and decreases in spermidine and/or spermine pools (7). The alterations in polyamine homeostasis are accompanied by bizarre phenotypic changes, such as the earl...
Keratosis follicularis spinulosa decalvans (KFSD) or Siemens-1 syndrome is a rare X-linked disease of unknown etiology affecting the skin and the eye. Although most affected families are compatible with X-linked inheritance, KFSD appears to be clinically and genetically heterogeneous. So far, the gene has been mapped to Xp22.13p22.2 in two extended KFSD families. Analysis of additional recombination events in the first Dutch pedigree located the gene to an interval covering approximately 1 Mb between markers DXS7163 and DXS7593/DXS7105, whereas haplotype reconstruction in the second German family positioned the gene outside the previously identified region, proximal to marker DXS274. We report here the molecular characterization of an Xp21.1p22.12 duplication present in a patient affected with dosage-sensitive sex reversal (DSS) and KFSD. The duplicated region includes both the DAX1 gene (previously demonstrated to be responsible for DSS) and the KFSD interval, in which the gene encoding spermidine/spermine N(1)-acetyltransferase ( SSAT) is located. This enzyme catalyzes the N(1)-acetylation of spermidine and spermine and, by the successive activity of polyamine oxidase, the spermine can be converted to spermidine and the spermidine to putrescine. Overexpression of the SSAT enzyme in a mouse model results in putrescine accumulation and a phenotype with skin and hair abnormalities reminiscent of human KFSD. Analysis of polyamine metabolism in the cells of the patient indicated that the levels of metabolites such as putrescine, spermidine and spermine were consistent with the overexpression of the SSAT gene as in the murine model. Thus, we propose that overexpression of SSAT and the consequent putrescine accumulation are involved in the KFSD phenotype, at least in our propositus.
Low H19 and abundant IGF-II expression may have a role in the development of adrenocortical carcinomas. In the mouse, the H19 promoter area has been found to be methylated when transcription of the H19 gene is silent and unmethylated when it is active. We used PCR-based methylation analysis and bisulfite genomic sequencing to study the cytosine methylation status of the H19 promoter region in 16 normal adrenals and 30 pathological adrenocortical samples. PCR-based analysis showed higher methylation status at three HpaII-cutting CpG sites of the H19 promoter in adrenocortical carcinomas and in a virilizing adenoma than in their adjacent normal adrenal tissues. Bisulfite genomic sequencing revealed a significantly higher mean degree of methylation at each of 12 CpG sites of the H19 promoter in adrenocortical carcinomas than in normal adrenals (P < 0.01 for all sites) or adrenocortical adenomas (P < 0.01, except P < 0.05 for site 12 and P > 0.05 for site 11). The mean methylation degree of the 12 CpG sites was significantly higher in the adrenocortical carcinomas (mean +/- SE, 76 +/- 7%) than in normal adrenals (41 +/- 2%) or adrenocortical adenomas (45 +/- 3%; both P < 0.005). RNA analysis indicated that the adrenocortical carcinomas expressed less H19 but more IGF-II RNAs than normal adrenal tissues did. The mean methylation degree of the 12 H19 promoter CpG sites correlated negatively with H19 RNA levels (r = -0.550; P < 0.01), but positively with IGF-II mRNA levels (r = 0.805; P < 0.001). In the adrenocortical carcinoma cell line NCI-H295R, abundant IGF-II, but minimal H19, RNA expression was detected by Northern blotting. Treatment with a cytosine methylation inhibitor, 5-aza-2'-deoxycytidine, increased H19 RNA expression, whereas it decreased IGF-II mRNA accumulation dose- and time-dependently (both P < 0.005) and reduced cell proliferation to 10% in 7 d. Our results suggest that altered DNA methylation of the H19 promoter is involved in the abnormal expression of both H19 and IGF-II genes in human adrenocortical carcinomas.
We recently generated a transgenic mouse line overexpressing spermidine/spermine N1-acetyltransferase (SSAT) gene under its own promoter. The tissue polyamine pools of these animals were profoundly affected and the mice were hairless from early age. We have now generated another transgenic-mouse line overexpressing the SSAT gene under the control of a heavy-metal-inducible mouse metallothionein I (MT) promoter. Even in the absence of heavy metals, changes in the tissue polyamine pools indicated that a marked activation of polyamine catabolism had occurred in the transgenic animals. As with the SSAT transgenic mice generated previously, the mice of the new line (MT-SSAT) suffered permanent hair loss, but this occurred considerably later than in the previous SSAT transgenic animals. Liver was the most affected tissue in the MT-SSAT transgenic animals, revealed by putrescine overaccumulation, significant decrease in spermidine concentration and >90% reduction in the spermine pool. Even though hepatic SSAT mRNA accumulated to massive levels in non-induced transgenic animals, SSAT activity was only moderately elevated. Administration of ZnSO4 further elevated the level of hepatic SSAT message and induced enzyme activity, but not more than 2- to 3-fold. Treatment of the transgenic animals with the polyamine analogue N1,N11-diethylnorspermine (DENSPM) resulted in an immense induction, more than 40000-fold, of enzyme activity in the liver of transgenic animals, and minor changes in the SSAT mRNA level. Liver spermidine and spermine pools were virtually depleted within 1-2 days in response to the treatment with the analogue. The treatment also resulted in a marked mortality (up to 60%) among the transgenic animals which showed ultrastructural changes in the liver, most notably mitochondrial swelling, one of the earliest signs of cell injury. These results indicated that, even without its own promoter, SSAT is powerfully induced by the polyamine analogue through a mechanism that appears to involve a direct translational and/or heterogenous nuclear RNA processing control. It is likewise significant that overexpression of SSAT renders the animals extremely sensitive to polyamine analogues.
Type 2 diabetes is characterized by decreased rates of insulin-stimulated glucose uptake and utilization, reduced hexokinase II mRNA and enzyme production, and low basal levels of glucose 6-phosphate in insulin-sensitive skeletal muscle and adipose tissues. Hexokinase II is primarily expressed in muscle and adipose tissues where it catalyzes the phosphorylation of glucose to glucose 6-phosphate, a possible rate-limiting step for glucose disposal. To investigate the role of hexokinase II in insulin action and in glucose homeostasis as well as in mouse development, we generated a hexokinase II knock-out mouse. Mice homozygous for hexokinase II deficiency (HKII ؊/؊ ) died at approximately 7.5 days post-fertilization, indicating that hexokinase II is vital for mouse embryogenesis after implantation and before organogenesis. HKII ؉/؊ mice were viable, fertile, and grew normally. Surprisingly, even though HKII ؉/؊ mice had significantly reduced (by 50%) hexokinase II mRNA and activity levels in skeletal muscle, heart, and adipose tissue, they did not exhibit impaired insulin action or glucose tolerance even when challenged with a high-fat diet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.