We report on electro-optic beam deflection using an annealed proton exchange waveguide in lithium niobate (LN) with microstructured serrated array electrodes. Due to the electro-optic effect of the LN material, the experimental results show that the beam deflection and modulation of the LN waveguide can be realized with relatively low voltages. The total length of the serrated prism array electrodes structure is ∼5 mm. With 20 V applied to the electrodes of 50, 100, and 150 μm wide waveguides, ∼1.28, ∼0.96, and ∼0.64 μm beam deflections were obtained, respectively, which are in accordance with theoretical simulation. This configuration can be potentially applied in optical beam scanning, high-speed switches, and optical beam smoothing technology.
We propose and experimentally demonstrate a new electro-optically controllable add-drop filter based on light coupling between a microfiber knot ring (MKR) and a lithium niobate (LN) microwaveguide. In our design, the MKR works as a resonator and routes the resonant light into the LN microwaveguide. The LN microwaveguide, as an excellent intermediary between electronics and optics, is a robust platform that not only enables stable support and manipulation of the MKR but also provides amplitude tunability taking advantage of its electro-optic property. Two add-drop filters with different diameters of the MKR, 1.12 mm, and 560 μm respectively, are studied, and a maximum amplitude tunability of ∼0.139 dB/V is obtained. The results show that this design can be a solution to interconnect a microstructured optical fiber with a microstructured on-chip device and provide an effective method to realize the active on-chip integration of the conventional fiber system.
Abstract:In this paper, we experimentally demonstrate an add-drop filter based on wavelengthdependent light coupling between a lithium-niobate (LN) microwaveguide chip and a microfiber knot ring (MKR). The MKR was fabricated from a standard single-mode fiber, and the LN microwaveguide chip works as a robust substrate to support the MKR. The guided light can be transmitted through add and drop functionality and the behaviors of the add-drop filter can be clearly observed. Furthermore, its performance dependence on the MKR diameter is also studied experimentally. The approach, using a LN microwaveguide chip as a platform to couple and integrate the MKR, may enable us to realize an optical interlink between the microstructured chip and the micro/nano fiber-optic device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.